Rights statement: ©2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Accepted author manuscript, 158 KB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Comparing Data Collection Strategies via Input Uncertainty When Simulating Testing Policies Using Viral Load Profiles
AU - Parmar, Drupad
AU - Morgan, Lucy
AU - Titman, Andrew
AU - Regnier, Eva
AU - Sanchez, Susan
N1 - ©2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
PY - 2022/2/28
Y1 - 2022/2/28
N2 - Temporal profiles of viral load have individual variability and are used to determine whether individuals are infected based on some limit of detection. Modelling and simulating viral load profiles allows for the performance of testing policies to be estimated, however viral load behaviour can be very uncertain. We describe an approach for studying the input uncertainty passed to simulated policy performance when viral load profiles are estimated from different data collection strategies. Our example shows that comparing the strategies solely based on input uncertainty is inappropriate due to the differences in confidence interval coverage caused by negatively biased simulation outputs.
AB - Temporal profiles of viral load have individual variability and are used to determine whether individuals are infected based on some limit of detection. Modelling and simulating viral load profiles allows for the performance of testing policies to be estimated, however viral load behaviour can be very uncertain. We describe an approach for studying the input uncertainty passed to simulated policy performance when viral load profiles are estimated from different data collection strategies. Our example shows that comparing the strategies solely based on input uncertainty is inappropriate due to the differences in confidence interval coverage caused by negatively biased simulation outputs.
U2 - 10.5555/3522802.3522874
DO - 10.5555/3522802.3522874
M3 - Conference contribution/Paper
BT - WSC '21: Proceedings of the Winter Simulation Conference
PB - IEEE Press
T2 - Winter Simulation Conference 2021
Y2 - 13 December 2021 through 16 December 2021
ER -