Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Complexity in small-scale dwarf spheroidal galaxies
T2 - Ludwig Biermann Award Lecture
AU - Koch, Andreas
PY - 2009
Y1 - 2009
N2 - Our knowledge about the dynamics, the chemical abundances and the evolutionary histories of the more luminous dwarf spheroidal (dSph) galaxies is constantly growing. However, very little is known about the enrichment of the ultra-faint systems recently discovered in large numbers in large sky surveys. Current low-resolution spectroscopy and photometric data indicate that these galaxies are highly dark matter dominated and predominantly metal poor. On the other hand, recent high-resolution abundance analyses indicate that some dwarf galaxies experienced highly inhomogenous chemical enrichment, where star formation proceeds locally on small scales. In this article, I will review the kinematic and chemical abundance information of the Milky Way satellite dSphs that is presently available from low- and high resolution spectroscopy. Moreover, some of the most peculiar element and inhomogeneous enrichment patterns will be discussed and related to the question of to what extent the faintest dSph candidates could have contributed to the Galactic halo, compared to more luminous systems.
AB - Our knowledge about the dynamics, the chemical abundances and the evolutionary histories of the more luminous dwarf spheroidal (dSph) galaxies is constantly growing. However, very little is known about the enrichment of the ultra-faint systems recently discovered in large numbers in large sky surveys. Current low-resolution spectroscopy and photometric data indicate that these galaxies are highly dark matter dominated and predominantly metal poor. On the other hand, recent high-resolution abundance analyses indicate that some dwarf galaxies experienced highly inhomogenous chemical enrichment, where star formation proceeds locally on small scales. In this article, I will review the kinematic and chemical abundance information of the Milky Way satellite dSphs that is presently available from low- and high resolution spectroscopy. Moreover, some of the most peculiar element and inhomogeneous enrichment patterns will be discussed and related to the question of to what extent the faintest dSph candidates could have contributed to the Galactic halo, compared to more luminous systems.
U2 - 10.1002/9783527629190.ch2
DO - 10.1002/9783527629190.ch2
M3 - Conference contribution/Paper
SN - 9783527409105
VL - 21
SP - 39
EP - 69
BT - Reviews in Modern Astronomy
A2 - Röser, Siegfried
PB - Wiley
ER -