Home > Research > Publications & Outputs > Component repair using laser direct metal depos...
View graph of relations

Component repair using laser direct metal deposition

Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSNConference contribution/Paperpeer-review



Laser Direct Metal Deposition (LDMD) is investigated as a method for repairing cracks and defects in metallic components. An experimental investigation has simulated flawed components in the form of plates of H 13 hot work tool steel with a square slot milled into the upper surface of each. H 13 powder was deposited into the grooves using the LDMD method with a 1.5 kW diode laser. Different combinations of deposition parameter were tested and each sample analysed in terms of mass deposition rate, deposition microstructure, evidence of porosity and mechanical properties, including microhardness and tensile strength. In this work the results are presented and interpreted using statistical techniques to allow the overall quality of the repair process to be related to some of the key LDMD input process variables. Results show that the LDMD method can produce high quality repairs for internal defects; however, the range of values obtained in each test also-highlights the sensitivity of the process to correct selection of deposition parameters.