Rights statement: This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © 2020 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jpcc.9b10232
Accepted author manuscript, 910 KB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
<mark>Journal publication date</mark> | 26/03/2020 |
---|---|
<mark>Journal</mark> | The Journal of Physical Chemistry C |
Issue number | 12 |
Volume | 124 |
Number of pages | 7 |
Pages (from-to) | 6479-6485 |
Publication Status | Published |
Early online date | 17/03/20 |
<mark>Original language</mark> | English |
We studied the electrical conductance of single-molecule junctions formed from molecular wires with four anchor groups. Three tetraphenyl-aza-BODIPYs with four or two thiomethyl anchor groups were synthesized, and their single-molecule conductance was measured using break-junction-STM. Using DFT based calculations these compounds were shown to display a combination of a high and low conductance, depending on the molecule's connectivity in the junction. A scissor correction is employed to obtain the corrected HOMO-LUMO gaps and a tight binding model (TBM) is used to highlight the role of transport through the pi system of the tetraphenyl-aza-BODIPY central unit. The three higher-conductance geometries follow the sequence 3 > 4 > 2, which demonstrates that their conductances are correlated with the number of anchors.