Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Cooperative optical pattern formation in an ultrathin atomic layer
AU - Parmee, Christopher
AU - Ruostekoski, Janne
PY - 2023/12/4
Y1 - 2023/12/4
N2 - Spontaneous pattern formation from a uniform state is a widely studied nonlinear optical phenomenon that shares similarities with non-equilibrium pattern formation in other scientific domains. Here we show how a single layer of atoms in an array can undergo nonlinear amplification of fluctuations, leading to the formation of intricate optical patterns. The origin of the patterns is intrinsically cooperative, eliminating the necessity of mirrors or cavities, although introduction of a mirror in the vicinity of the atoms significantly modifies the scattering profiles. The emergence of these optical patterns is tied to a bistable collective response, which can be qualitatively described by a long-wavelength approximation, similar to a nonlinear Schrödinger equation of optical Kerr media or ring cavities. These collective excitations have the ability to form singular defects and unveil atomic position fluctuations through wave-like distortions.
AB - Spontaneous pattern formation from a uniform state is a widely studied nonlinear optical phenomenon that shares similarities with non-equilibrium pattern formation in other scientific domains. Here we show how a single layer of atoms in an array can undergo nonlinear amplification of fluctuations, leading to the formation of intricate optical patterns. The origin of the patterns is intrinsically cooperative, eliminating the necessity of mirrors or cavities, although introduction of a mirror in the vicinity of the atoms significantly modifies the scattering profiles. The emergence of these optical patterns is tied to a bistable collective response, which can be qualitatively described by a long-wavelength approximation, similar to a nonlinear Schrödinger equation of optical Kerr media or ring cavities. These collective excitations have the ability to form singular defects and unveil atomic position fluctuations through wave-like distortions.
U2 - 10.1364/OE.505009
DO - 10.1364/OE.505009
M3 - Journal article
VL - 31
JO - Optics Express
JF - Optics Express
SN - 1094-4087
IS - 25
M1 - 42046
ER -