Home > Research > Publications & Outputs > Coupling functions enable secure communications

Associated organisational unit

Electronic data

  • PhysRevX.4.011026

    Rights statement: Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

    Final published version, 644 KB, PDF document

    Available under license: CC BY

Links

Text available via DOI:

View graph of relations

Coupling functions enable secure communications

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Article number011026
<mark>Journal publication date</mark>26/02/2014
<mark>Journal</mark>Physical Review X
Volume4
Number of pages9
Publication StatusPublished
<mark>Original language</mark>English

Abstract

Secure encryption is an essential feature of modern communications, but rapid progress in illicit decryption brings a continuing need for new schemes that are harder and harder to break. Inspired by the time-varying nature of the cardiorespiratory interaction, here we introduce a new class of
secure communications that is highly resistant to conventional attacks. Unlike all earlier encryption procedures, this cipher makes use of the coupling functions between interacting dynamical systems.
It results in an unbounded number of encryption key possibilities, allows the transmission/reception of more than one signal simultaneously, and is robust against external noise. Thus, the information signals are encrypted as the time-variations of linearly-independent coupling functions. Using predetermined forms of coupling function, we can apply Bayesian inference on the receiver side to
detect and separate the information signals while simultaneously eliminating the effect of external noise. The scheme is highly modular and is readily extendable to support different communications applications within the same general framework.

Bibliographic note

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.