Rights statement: This is the author’s version of a work that was accepted for publication in Reliability Engineering and System Safety. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Reliability Engineering and System Safety, 234, 2023 DOI: 10.1016/j.ress.2023.109171
Accepted author manuscript, 6.63 MB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Cross-Domain Augmentation Diagnosis
T2 - An Adversarial Domain-Augmented Generalization Method for Fault Diagnosis under Unseen Working Conditions
AU - Li, Qi
AU - Chen, Liang
AU - Kong, Lin
AU - Wang, Dong
AU - Xia, Min
AU - Shen, Changqing
N1 - This is the author’s version of a work that was accepted for publication in Reliability Engineering and System Safety. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Reliability Engineering and System Safety, 234, 2023 DOI: 10.1016/j.ress.2023.109171
PY - 2023/6/30
Y1 - 2023/6/30
N2 - Intelligent fault diagnosis based on domain adaptation has recently been extensively researched to promote reliability of safety-critical assets under different working conditions. However, target data may be inaccessible in the model training phase, resulting in the degradation or failure of the diagnosis model. Therefore, this paper introduces a new idea called cross-domain augmentation (CDA) to achieve diagnosis under unseen working conditions, which are frequently occurred in industrial scenarios. To realize this idea, an adversarial domain-augmented generalization (ADAG) method is proposed with domain augmentation via convex combination of data and feature-label pairs. Through adversarial training on multi-source domains and the augmented domain, ADAG enables learning generalized and augmented features, which are proximal representation in the unseen domain, facilitating the generalization ability of the model. Moreover, feature extractor and domain classifier are optimized as adversaries in model training to obtain domain-invariant features, while the fault classifier is trained to identify the features. Extensive experiment studies indicate that ADAG can successfully solve the cross-domain diagnosis problem under unseen working conditions. For SDUST case study, ADAG promotes the model accuracy by 1.44%; while for a more challenging Ottawa case study, it promotes the model accuracy by 5.34%. Moreover, the domain discrepancy is reduced by 4.6%.
AB - Intelligent fault diagnosis based on domain adaptation has recently been extensively researched to promote reliability of safety-critical assets under different working conditions. However, target data may be inaccessible in the model training phase, resulting in the degradation or failure of the diagnosis model. Therefore, this paper introduces a new idea called cross-domain augmentation (CDA) to achieve diagnosis under unseen working conditions, which are frequently occurred in industrial scenarios. To realize this idea, an adversarial domain-augmented generalization (ADAG) method is proposed with domain augmentation via convex combination of data and feature-label pairs. Through adversarial training on multi-source domains and the augmented domain, ADAG enables learning generalized and augmented features, which are proximal representation in the unseen domain, facilitating the generalization ability of the model. Moreover, feature extractor and domain classifier are optimized as adversaries in model training to obtain domain-invariant features, while the fault classifier is trained to identify the features. Extensive experiment studies indicate that ADAG can successfully solve the cross-domain diagnosis problem under unseen working conditions. For SDUST case study, ADAG promotes the model accuracy by 1.44%; while for a more challenging Ottawa case study, it promotes the model accuracy by 5.34%. Moreover, the domain discrepancy is reduced by 4.6%.
KW - Domain augmentation
KW - Fault diagnosis
KW - Unseen working condition
KW - Rotating machinery
KW - Domain generalization
U2 - 10.1016/j.ress.2023.109171
DO - 10.1016/j.ress.2023.109171
M3 - Journal article
VL - 234
JO - Reliability Engineering and System Safety
JF - Reliability Engineering and System Safety
SN - 0951-8320
M1 - 109171
ER -