Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - DeepZipper. II. Searching for Lensed Supernovae in Dark Energy Survey Data with Deep Learning
AU - Dark Energy Survey Collaboration
AU - Morgan, R.
AU - Nord, B.
AU - Bechtol, K.
AU - Möller, A.
AU - Hartley, W. G.
AU - Birrer, S.
AU - González, S. J.
AU - Martinez, M.
AU - Gruendl, R. A.
AU - Buckley-Geer, E. J.
AU - Shajib, A. J.
AU - Carnero Rosell, A.
AU - Lidman, C.
AU - Collett, T.
AU - Abbott, T. M. C.
AU - Aguena, M.
AU - Andrade-Oliveira, F.
AU - Annis, J.
AU - Bacon, D.
AU - Bocquet, S.
AU - Brooks, D.
AU - Burke, D. L.
AU - Carrasco Kind, M.
AU - Carretero, J.
AU - Castander, F. J.
AU - Conselice, C.
AU - da Costa, L. N.
AU - Costanzi, M.
AU - De Vicente, J.
AU - Desai, S.
AU - Doel, P.
AU - Everett, S.
AU - Ferrero, I.
AU - Flaugher, B.
AU - Friedel, D.
AU - Frieman, J.
AU - García-Bellido, J.
AU - Gaztanaga, E.
AU - Gruen, D.
AU - Gutierrez, G.
AU - Hinton, S. R.
AU - Hollowood, D. L.
AU - Honscheid, K.
AU - Kuehn, K.
AU - Kuropatkin, N.
AU - Lahav, O.
AU - Lima, M.
AU - Menanteau, F.
AU - Miquel, R.
AU - Smith, M.
PY - 2023/1/20
Y1 - 2023/1/20
N2 - Gravitationally lensed supernovae (LSNe) are important probes of cosmic expansion, but they remain rare and difficult to find. Current cosmic surveys likely contain 5-10 LSNe in total while next-generation experiments are expected to contain several hundred to a few thousand of these systems. We search for these systems in observed Dark Energy Survey (DES) five year SN fields—10 3 sq. deg. regions of sky imaged in the griz bands approximately every six nights over five years. To perform the search, we utilize the DeepZipper approach: a multi-branch deep learning architecture trained on image-level simulations of LSNe that simultaneously learns spatial and temporal relationships from time series of images. We find that our method obtains an LSN recall of 61.13% and a false-positive rate of 0.02% on the DES SN field data. DeepZipper selected 2245 candidates from a magnitude-limited (m i < 22.5) catalog of 3,459,186 systems. We employ human visual inspection to review systems selected by the network and find three candidate LSNe in the DES SN fields.
AB - Gravitationally lensed supernovae (LSNe) are important probes of cosmic expansion, but they remain rare and difficult to find. Current cosmic surveys likely contain 5-10 LSNe in total while next-generation experiments are expected to contain several hundred to a few thousand of these systems. We search for these systems in observed Dark Energy Survey (DES) five year SN fields—10 3 sq. deg. regions of sky imaged in the griz bands approximately every six nights over five years. To perform the search, we utilize the DeepZipper approach: a multi-branch deep learning architecture trained on image-level simulations of LSNe that simultaneously learns spatial and temporal relationships from time series of images. We find that our method obtains an LSN recall of 61.13% and a false-positive rate of 0.02% on the DES SN field data. DeepZipper selected 2245 candidates from a magnitude-limited (m i < 22.5) catalog of 3,459,186 systems. We employ human visual inspection to review systems selected by the network and find three candidate LSNe in the DES SN fields.
U2 - 10.3847/1538-4357/ac721b
DO - 10.3847/1538-4357/ac721b
M3 - Journal article
VL - 943
JO - The Astrophysical Journal
JF - The Astrophysical Journal
SN - 0004-637X
IS - 1
M1 - 19
ER -