Accepted author manuscript, 1.59 MB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Licence: Unspecified
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Design of Cooperative Non-Orthogonal Multicast Cognitive Multiple Access for 5G Systems
T2 - User Scheduling and Performance Analysis
AU - Lv, Lu
AU - Chen, Jian
AU - Ni, Qiang
AU - Ding, Zhiguo
PY - 2017/6
Y1 - 2017/6
N2 - Non-orthogonal multiple access (NOMA) is emerging as a promising, yet challenging, multiple access technology to improve spectrum utilization for the fifth generation (5G) wireless networks. In this paper, the application of NOMA to multicast cognitive radio networks (termed as MCR-NOMA) is investigated. A dynamic cooperative MCR-NOMA scheme is proposed, where the multicast secondary users serve as relays to improve the performance of both primary and secondary networks. Based on the available channel state information (CSI), three different secondary user scheduling strategies for the cooperative MCR-NOMA scheme are presented. To evaluate the system performance, we derive the closed-form expressions of the outage probability and diversity order for both networks. Furthermore, we introduce a new metric, referred to as mutual outage probability to characterize the cooperation benefit compared to non cooperative MCR-NOMA scheme. Simulation results demonstrate significant performance gains are obtained for both networks, thanks to the use of our proposed cooperative MCR-NOMA scheme. It is also demonstrated that higher spatial diversity order can be achieved by opportunistically utilizing the CSI available for the secondary user scheduling.
AB - Non-orthogonal multiple access (NOMA) is emerging as a promising, yet challenging, multiple access technology to improve spectrum utilization for the fifth generation (5G) wireless networks. In this paper, the application of NOMA to multicast cognitive radio networks (termed as MCR-NOMA) is investigated. A dynamic cooperative MCR-NOMA scheme is proposed, where the multicast secondary users serve as relays to improve the performance of both primary and secondary networks. Based on the available channel state information (CSI), three different secondary user scheduling strategies for the cooperative MCR-NOMA scheme are presented. To evaluate the system performance, we derive the closed-form expressions of the outage probability and diversity order for both networks. Furthermore, we introduce a new metric, referred to as mutual outage probability to characterize the cooperation benefit compared to non cooperative MCR-NOMA scheme. Simulation results demonstrate significant performance gains are obtained for both networks, thanks to the use of our proposed cooperative MCR-NOMA scheme. It is also demonstrated that higher spatial diversity order can be achieved by opportunistically utilizing the CSI available for the secondary user scheduling.
U2 - 10.1109/TCOMM.2017.2677942
DO - 10.1109/TCOMM.2017.2677942
M3 - Journal article
VL - 65
SP - 2641
EP - 2656
JO - IEEE Transactions on Communications
JF - IEEE Transactions on Communications
SN - 0090-6778
IS - 6
ER -