Rights statement: This is the author’s version of a work that was accepted for publication in Quaternary Science Reviews. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Quaternary Science Reviews, 254, 2021 DOI: 10.1016/j.quascirev.2020.106784
Accepted author manuscript, 6.64 MB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Detecting and quantifying palaeoseasonality in stalagmites using geochemical and modelling approaches
AU - Baldini, J.U.L.
AU - Lechleitner, F.A.
AU - Breitenbach, S.F.M.
AU - van Hunen, J.
AU - Baldini, L.M.
AU - Wynn, P.M.
AU - Jamieson, R.A.
AU - Ridley, H.E.
AU - Baker, A.J.
AU - Walczak, I.W.
AU - Fohlmeister, J.
N1 - This is the author’s version of a work that was accepted for publication in Quaternary Science Reviews. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Quaternary Science Reviews, 254, 2021 DOI: 10.1016/j.quascirev.2020.106784
PY - 2021/2/15
Y1 - 2021/2/15
N2 - Stalagmites are an extraordinarily powerful resource for the reconstruction of climatological palaeoseasonality. Here, we provide a review of different types of seasonality preserved by stalagmites and methods for extracting this information. A new drip classification scheme is introduced, which facilitates the identification of stalagmites fed by seasonally responsive drips and which highlights the wide variability in drip types feeding stalagmites. This hydrological variability, combined with seasonality in Earth atmospheric processes, meteoric precipitation, biological processes within the soil, and cave atmosphere composition means that every stalagmite retains a different and distinct (but correct) record of environmental conditions. Replication of a record is extremely useful but should not be expected unless comparing stalagmites affected by the same processes in the same proportion. A short overview of common microanalytical techniques is presented, and suggested best practice discussed. In addition to geochemical methods, a new modelling technique for extracting meteoric precipitation and temperature palaeoseasonality from stalagmite δ18O data is discussed and tested with both synthetic and real-world datasets. Finally, world maps of temperature, meteoric precipitation amount, and meteoric precipitation oxygen isotope ratio seasonality are presented and discussed, with an aim of helping to identify regions most sensitive to shifts in seasonality. © 2021 Elsevier Ltd
AB - Stalagmites are an extraordinarily powerful resource for the reconstruction of climatological palaeoseasonality. Here, we provide a review of different types of seasonality preserved by stalagmites and methods for extracting this information. A new drip classification scheme is introduced, which facilitates the identification of stalagmites fed by seasonally responsive drips and which highlights the wide variability in drip types feeding stalagmites. This hydrological variability, combined with seasonality in Earth atmospheric processes, meteoric precipitation, biological processes within the soil, and cave atmosphere composition means that every stalagmite retains a different and distinct (but correct) record of environmental conditions. Replication of a record is extremely useful but should not be expected unless comparing stalagmites affected by the same processes in the same proportion. A short overview of common microanalytical techniques is presented, and suggested best practice discussed. In addition to geochemical methods, a new modelling technique for extracting meteoric precipitation and temperature palaeoseasonality from stalagmite δ18O data is discussed and tested with both synthetic and real-world datasets. Finally, world maps of temperature, meteoric precipitation amount, and meteoric precipitation oxygen isotope ratio seasonality are presented and discussed, with an aim of helping to identify regions most sensitive to shifts in seasonality. © 2021 Elsevier Ltd
KW - Earth atmosphere
KW - Facsimile
KW - Maps
KW - Classification scheme
KW - Environmental conditions
KW - Geochemical methods
KW - Hydrological variability
KW - Micro-analytical techniques
KW - Modelling techniques
KW - Oxygen isotope ratios
KW - Real-world datasets
KW - Geochemistry
U2 - 10.1016/j.quascirev.2020.106784
DO - 10.1016/j.quascirev.2020.106784
M3 - Journal article
VL - 254
JO - Quaternary Science Reviews
JF - Quaternary Science Reviews
SN - 0277-3791
M1 - 106784
ER -