Rights statement: This is an author-created, un-copyedited version of an article accepted for publication/published in Chinese Physics B. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi:10.1088/1674-1056/ac422f
Accepted author manuscript, 688 KB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Determine the physical mechanism and source region of beat wave modulation by changing the frequency of high-frequency waves
AU - Guo, Zhe
AU - Fang, Hanxian
AU - Honary, Farideh
N1 - This is an author-created, un-copyedited version of an article accepted for publication/published in Chinese Physics B. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi:10.1088/1674-1056/ac422f
PY - 2022/2/28
Y1 - 2022/2/28
N2 - This paper introduces a new approach for the determination of the source region of beat wave (BW) modulation. This type of modulation is achieved by transmitting high-frequency (HF) continuous waves with a frequency difference f , where f is the frequency of modulated ELF/VLF (extremely low frequency/very low frequency) waves from two sub-arrays of a high power HF transmitter. Despite the advantages of BW modulation in terms of generating more stable ELF/VLF signal and high modulation efficiency, there exists a controversy on the physical mechanism of BW and its source region. In this paper, the two controversial theories, i.e., BW based on D-E region thermal nonlinearity and BW based on F region ponderomotive nonlinearity are examined for cases where each of these two theories exists exclusively or both of them exist simultaneously. According to the analysis and simulation results presented in this paper, it is found that the generated VLF signal amplitude exhibits significant variation as a function of HF frequency in different source regions. Therefore, this characteristic can be utilized as a potential new approach to determine the physical mechanism and source location of BW.
AB - This paper introduces a new approach for the determination of the source region of beat wave (BW) modulation. This type of modulation is achieved by transmitting high-frequency (HF) continuous waves with a frequency difference f , where f is the frequency of modulated ELF/VLF (extremely low frequency/very low frequency) waves from two sub-arrays of a high power HF transmitter. Despite the advantages of BW modulation in terms of generating more stable ELF/VLF signal and high modulation efficiency, there exists a controversy on the physical mechanism of BW and its source region. In this paper, the two controversial theories, i.e., BW based on D-E region thermal nonlinearity and BW based on F region ponderomotive nonlinearity are examined for cases where each of these two theories exists exclusively or both of them exist simultaneously. According to the analysis and simulation results presented in this paper, it is found that the generated VLF signal amplitude exhibits significant variation as a function of HF frequency in different source regions. Therefore, this characteristic can be utilized as a potential new approach to determine the physical mechanism and source location of BW.
U2 - 10.1088/1674-1056/ac422f
DO - 10.1088/1674-1056/ac422f
M3 - Journal article
VL - 31
SP - 1
EP - 6
JO - Chinese Physics B
JF - Chinese Physics B
M1 - 024103
ER -