Rights statement: © 2015 Adeniran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Final published version, 6.79 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Effects of persistent atrial fibrillation-induced electrical remodeling on atrial electro-mechanics – insights from a 3D model of the human atria
AU - Adeniran, Ismail
AU - Maclver, David H.
AU - Garratt, Clifford J.
AU - Ye, Jianqiao
AU - Hancox, Jules C.
AU - Zhang, Henggui
N1 - © 2015 Adeniran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2015/11/25
Y1 - 2015/11/25
N2 - A 3D electromechanical model of the human atria was developed to investigate the effects of AFER on atrial electro-mechanics. Simulations were carried out in 3 conditions for 4states: (i) the control condition, representing the normal tissue (state 1) and the tissue 2–3months after cardio version (state 2) when the atrial tissue recovers its electrophysiological properties after completion of reverse electrophysiological remodelling; (ii) AFER-SR condition for AF-remodelled tissue with normal sinus rhythm (SR) (state 3); and (iii) AFER-AF condition for AF-remodeled tissue with re-entrant excitation waves (state 4). Our results indicate that at the cellular level, AFER (states 3 & 4) abbreviated action potentials and reduced the Ca2+content in the sarcoplasmic reticulum, resulting in a reduced amplitude of the intracellular Ca2+transient leading to decreased cell active force and cell shortening as compared to the control condition (states 1 & 2). Consequently at the whole organ level, atrial contraction in AFER-SR condition (state 3) was dramatically reduced. In the AFER-AF condition (state 4) atrial contraction was almost abolished.
AB - A 3D electromechanical model of the human atria was developed to investigate the effects of AFER on atrial electro-mechanics. Simulations were carried out in 3 conditions for 4states: (i) the control condition, representing the normal tissue (state 1) and the tissue 2–3months after cardio version (state 2) when the atrial tissue recovers its electrophysiological properties after completion of reverse electrophysiological remodelling; (ii) AFER-SR condition for AF-remodelled tissue with normal sinus rhythm (SR) (state 3); and (iii) AFER-AF condition for AF-remodeled tissue with re-entrant excitation waves (state 4). Our results indicate that at the cellular level, AFER (states 3 & 4) abbreviated action potentials and reduced the Ca2+content in the sarcoplasmic reticulum, resulting in a reduced amplitude of the intracellular Ca2+transient leading to decreased cell active force and cell shortening as compared to the control condition (states 1 & 2). Consequently at the whole organ level, atrial contraction in AFER-SR condition (state 3) was dramatically reduced. In the AFER-AF condition (state 4) atrial contraction was almost abolished.
U2 - 10.1371/journal.pone.0142397
DO - 10.1371/journal.pone.0142397
M3 - Journal article
VL - 10
JO - PLoS ONE
JF - PLoS ONE
SN - 1932-6203
IS - 11
M1 - e0142397
ER -