Accepted author manuscript, 0.98 MB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Electrochemical characteristic of non-stoichiometric SmBa0.45Sr0.5Co2O5+d layered perovskite oxide system for IT-SOFC cathode
AU - Song, Kyeong Eun
AU - Schlegl, Harald
AU - Kang, Hyunil
AU - Choi, Wonseok
AU - Kim, Jung Hyun
PY - 2023/5/29
Y1 - 2023/5/29
N2 - In this study, the composition of the layered perovskite SmBa0.5Sr0.5Co2O5+d was changed to different non-stoichiometric compositions by changing the substitution amount of Ba and Sr. SmBa0.45Sr0.5Co2O5+d (SBSCO-0.45/0.5) showed the lowest area specific resistance (ASR) because the area % caused by high binding energy (HBE) of O1s in the X-ray photoelectron spectroscopy (XPS) analysis was the largest compared to all other tested compositions and also the unit cell volume was smaller than that of other samples. The dense SmBa0.5Sr0.48Co2O5+d (SBSCO-0.5/0.48) showed the highest electrical conductivity. This is because SBSCO-0.5/0.48 has the smallest decrease in oxygen contents compared to other samples when subject to temperature increase. Also, through XPS analysis, it was found that the area % of the Co3+ and Co4+ coexistence regions of Co2p of SBSCO-0.5/0.48 was the largest. The electrical conductivity values and behaviors of the porous SBSCO-0.45/0.5 and SBSCO-0.5/0.48 were not significantly different. Comparing the single-cell performance with composite cathodes comprised of SBSCO-0.45/0.5 and SBSCO-0.5/0.48 with CGO91, the results show that the single-cell with the SBSCO-0.45/0.5 and CGO91 cathode showed higher maximum power density.
AB - In this study, the composition of the layered perovskite SmBa0.5Sr0.5Co2O5+d was changed to different non-stoichiometric compositions by changing the substitution amount of Ba and Sr. SmBa0.45Sr0.5Co2O5+d (SBSCO-0.45/0.5) showed the lowest area specific resistance (ASR) because the area % caused by high binding energy (HBE) of O1s in the X-ray photoelectron spectroscopy (XPS) analysis was the largest compared to all other tested compositions and also the unit cell volume was smaller than that of other samples. The dense SmBa0.5Sr0.48Co2O5+d (SBSCO-0.5/0.48) showed the highest electrical conductivity. This is because SBSCO-0.5/0.48 has the smallest decrease in oxygen contents compared to other samples when subject to temperature increase. Also, through XPS analysis, it was found that the area % of the Co3+ and Co4+ coexistence regions of Co2p of SBSCO-0.5/0.48 was the largest. The electrical conductivity values and behaviors of the porous SBSCO-0.45/0.5 and SBSCO-0.5/0.48 were not significantly different. Comparing the single-cell performance with composite cathodes comprised of SBSCO-0.45/0.5 and SBSCO-0.5/0.48 with CGO91, the results show that the single-cell with the SBSCO-0.45/0.5 and CGO91 cathode showed higher maximum power density.
U2 - 10.1016/j.ijhydene.2023.01.255
DO - 10.1016/j.ijhydene.2023.01.255
M3 - Journal article
VL - 48
SP - 17664
EP - 17676
JO - International Journal of Hydrogen Energy
JF - International Journal of Hydrogen Energy
SN - 0360-3199
IS - 46
ER -