Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Electron and photon efficiencies in LHC Run 2 with the ATLAS experiment
AU - The ATLAS collaboration
AU - Barton, A.E.
AU - Bertram, I.A.
AU - Borissov, G.
AU - Bouhova-Thacker, E.V.
AU - Ferguson, R.A.M.
AU - Ferrando, James
AU - Fox, H.
AU - Hagan, Alina
AU - Henderson, R.C.W.
AU - Jones, R.W.L.
AU - Kartvelishvili, V.
AU - Love, P.A.
AU - Marshall, E.J.
AU - Meng, L.
AU - Muenstermann, D.
AU - Ribaric, N.
AU - Rybacki, K.
AU - Smizanska, M.
AU - Spinali, S.
AU - Wharton, A.M.
PY - 2024/5/14
Y1 - 2024/5/14
N2 - Precision measurements of electron reconstruction, identification, and isolation efficiencies and photon identification efficiencies are presented. They use the full Run 2 data sample collected by the ATLAS experiment in pp collisions at a centre-of-mass energy of 13 TeV during the years 2015–2018, corresponding to an integrated luminosity of 139 fb−1. The measured electron identification efficiencies have uncertainties that are around 30%–50% smaller than the previous Run 2 results due to an improved methodology and the inclusion of more data. A better pile-up subtraction method leads to electron isolation efficiencies that are more independent of the amount of pile-up activity. Updated photon identification efficiencies are also presented, using the full Run 2 data. When compared to the previous measurement, a 30%–40% smaller uncertainty is observed on the photon identification efficiencies, thanks to the increased amount of available data.
AB - Precision measurements of electron reconstruction, identification, and isolation efficiencies and photon identification efficiencies are presented. They use the full Run 2 data sample collected by the ATLAS experiment in pp collisions at a centre-of-mass energy of 13 TeV during the years 2015–2018, corresponding to an integrated luminosity of 139 fb−1. The measured electron identification efficiencies have uncertainties that are around 30%–50% smaller than the previous Run 2 results due to an improved methodology and the inclusion of more data. A better pile-up subtraction method leads to electron isolation efficiencies that are more independent of the amount of pile-up activity. Updated photon identification efficiencies are also presented, using the full Run 2 data. When compared to the previous measurement, a 30%–40% smaller uncertainty is observed on the photon identification efficiencies, thanks to the increased amount of available data.
KW - Hadron-Hadron Scattering
U2 - 10.1007/jhep05(2024)162
DO - 10.1007/jhep05(2024)162
M3 - Journal article
VL - 2024
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
SN - 1029-8479
IS - 5
M1 - 162
ER -