Rights statement: This is the author’s version of a work that was accepted for publication in Journal of Solid State Chemistry. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Solid State Chemistry, 308, 2022 DOI: 10.1016/j.jssc.2022.122903
Accepted author manuscript, 1.67 MB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Electron and proton conducting framework organic salt single crystals
AU - Wang, Chen
AU - Yan, Tingting
AU - Xing, Guolong
AU - Bailey, Steven
AU - Lambert, Colin
AU - Fayon, Pierre
AU - Trewin, Abbie
AU - Ben, Teng
N1 - This is the author’s version of a work that was accepted for publication in Journal of Solid State Chemistry. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Solid State Chemistry, 308, 2022 DOI: 10.1016/j.jssc.2022.122903
PY - 2022/4/30
Y1 - 2022/4/30
N2 - Organic molecular assemblies that can conduct both electrons and protons are attractive materials, as they have important applications in organic electronics and fuel cells. Herein, two three-dimensional conducting framework organic salt (CFOS) single crystals with excellent electron and proton conductivity have been successfully synthesized by a simple drop-wise addition and crystallization method. The packing structure of CFOSs can be controlled through changing the central atom of building unit from a single carbon atom to a silicon atom, which in turn affects the electron and proton conductivity of CFOSs. Furthermore, the theoretical calculation results show that electron conduction occurs through the 3D super stacked π-conjugated network pathways whereas the proton conduction occurs via a novel combination of Grotthus and vehicular diffusion. The general design strategy and intuitive results in this work will provide practically useful insights in the preparation of new conducting framework organic salt single crystals with tuneable structures for specific applications.
AB - Organic molecular assemblies that can conduct both electrons and protons are attractive materials, as they have important applications in organic electronics and fuel cells. Herein, two three-dimensional conducting framework organic salt (CFOS) single crystals with excellent electron and proton conductivity have been successfully synthesized by a simple drop-wise addition and crystallization method. The packing structure of CFOSs can be controlled through changing the central atom of building unit from a single carbon atom to a silicon atom, which in turn affects the electron and proton conductivity of CFOSs. Furthermore, the theoretical calculation results show that electron conduction occurs through the 3D super stacked π-conjugated network pathways whereas the proton conduction occurs via a novel combination of Grotthus and vehicular diffusion. The general design strategy and intuitive results in this work will provide practically useful insights in the preparation of new conducting framework organic salt single crystals with tuneable structures for specific applications.
U2 - 10.1016/j.jssc.2022.122903
DO - 10.1016/j.jssc.2022.122903
M3 - Journal article
VL - 308
JO - Journal of Solid State Chemistry
JF - Journal of Solid State Chemistry
SN - 0022-4596
M1 - 122903
ER -