Rights statement: This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of the American Chemical Society, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/jacs.2c09656
Accepted author manuscript, 1.41 MB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Enhanced π–π Stacking between Dipole-Bearing Single Molecules Revealed by Conductance Measurement
AU - Zhang, Chengyang
AU - Cheng, Jie
AU - Wu, Qingqing
AU - Hou, Songjun
AU - Feng, Sai
AU - Jiang, Bo
AU - Lambert, Colin J.
AU - Gao, Xike
AU - Li, Yueqi
AU - Li, Jinghong
N1 - This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of the American Chemical Society, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/jacs.2c09656
PY - 2023/1/25
Y1 - 2023/1/25
N2 - Dipoles are widely involved in π-π interactions and are central to many chemical and biological functions, but their influence on the strength of π-π interactions remains unclear. Here, we report a study of π-π interaction between azulene-based, polar single molecules and between naphthalene-based, nonpolar single molecules. By performing scanning tunneling microscopy break junction measurements of single-molecule conductance, we show that the π-stacked dimers formed by the azulene-based, polar aromatic structures feature higher electrical conductivity and mechanical stability than those formed by the naphthalene-based, nonpolar molecules. Mechanical control of π-π interactions in both rotational and translational motion reveals a sensitive dependence of the stacking strength on relative alignment between the dipoles. The antiparallel alignment of the dipoles was found to be the optimal stacking configuration that underpins the observed enhancement of π-π stacking between azulene-based single molecules. Density functional theory calculations further explained the observed enhancement of stacking strength and the corresponding charge transport efficiency. Our experimental and theoretical results show that the antiparallel alignment of the dipole moments significantly enhances the electronic coupling and mechanical stability of π-π stacking. In addition, in the formation of single-molecule junctions, the azulene group was experimentally and theoretically proved to form a Au−π contact with electrodes with high charge transport efficiency. This paper provides evidence and interpretation of the role of dipoles in π-π interactions at the single-molecule level and offers new insights into potential applications in supramolecular devices.
AB - Dipoles are widely involved in π-π interactions and are central to many chemical and biological functions, but their influence on the strength of π-π interactions remains unclear. Here, we report a study of π-π interaction between azulene-based, polar single molecules and between naphthalene-based, nonpolar single molecules. By performing scanning tunneling microscopy break junction measurements of single-molecule conductance, we show that the π-stacked dimers formed by the azulene-based, polar aromatic structures feature higher electrical conductivity and mechanical stability than those formed by the naphthalene-based, nonpolar molecules. Mechanical control of π-π interactions in both rotational and translational motion reveals a sensitive dependence of the stacking strength on relative alignment between the dipoles. The antiparallel alignment of the dipoles was found to be the optimal stacking configuration that underpins the observed enhancement of π-π stacking between azulene-based single molecules. Density functional theory calculations further explained the observed enhancement of stacking strength and the corresponding charge transport efficiency. Our experimental and theoretical results show that the antiparallel alignment of the dipole moments significantly enhances the electronic coupling and mechanical stability of π-π stacking. In addition, in the formation of single-molecule junctions, the azulene group was experimentally and theoretically proved to form a Au−π contact with electrodes with high charge transport efficiency. This paper provides evidence and interpretation of the role of dipoles in π-π interactions at the single-molecule level and offers new insights into potential applications in supramolecular devices.
KW - Colloid and Surface Chemistry
KW - Biochemistry
KW - General Chemistry
KW - Catalysis
U2 - 10.1021/jacs.2c09656
DO - 10.1021/jacs.2c09656
M3 - Journal article
VL - 145
SP - 1617
EP - 1630
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
SN - 0002-7863
IS - 3
ER -