Home > Research > Publications & Outputs > Entropy of shifts on higher-rank graph C*-algeb...
View graph of relations

Entropy of shifts on higher-rank graph C*-algebras.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Entropy of shifts on higher-rank graph C*-algebras. / Skalski, Adam G.; Zacharias, J.
In: Houston Journal of Mathematics, Vol. 34, No. 1, 09.05.2008, p. 269-282.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Skalski, AG & Zacharias, J 2008, 'Entropy of shifts on higher-rank graph C*-algebras.', Houston Journal of Mathematics, vol. 34, no. 1, pp. 269-282. <http://math.uh.edu/~hjm/Vol34-1.html>

APA

Skalski, A. G., & Zacharias, J. (2008). Entropy of shifts on higher-rank graph C*-algebras. Houston Journal of Mathematics, 34(1), 269-282. http://math.uh.edu/~hjm/Vol34-1.html

Vancouver

Skalski AG, Zacharias J. Entropy of shifts on higher-rank graph C*-algebras. Houston Journal of Mathematics. 2008 May 9;34(1):269-282.

Author

Skalski, Adam G. ; Zacharias, J. / Entropy of shifts on higher-rank graph C*-algebras. In: Houston Journal of Mathematics. 2008 ; Vol. 34, No. 1. pp. 269-282.

Bibtex

@article{67de85029af34a3698ee4ad8efaab92a,
title = "Entropy of shifts on higher-rank graph C*-algebras.",
abstract = "Let OΛ be a higher-rank graph C*-algebra. For every p in Z+r there is a canonical completely positive map Φp on OΛ and a subshift Tp on the path space X=Λ∞. We show that ht(Φp)=h(Tp), where ht is Voiculescu's approximation entropy and h the classical topological entropy. For a higher rank Cuntz-Krieger algebra OM we obtain ht(Φp)= log rad(M1 p1... Mr pr), rad being the spectral radius. This generalizes Boca and Goldstein's result for Cuntz-Krieger algebras.",
author = "Skalski, {Adam G.} and J. Zacharias",
note = "Posted on the arXiv: 9th May 2006. To appear in Houston Journal of Mathematics; accepted in final form: 25th August 2006. RAE_import_type : Internet publication RAE_uoa_type : Pure Mathematics",
year = "2008",
month = may,
day = "9",
language = "English",
volume = "34",
pages = "269--282",
journal = "Houston Journal of Mathematics",
publisher = "University of Houston",
number = "1",

}

RIS

TY - JOUR

T1 - Entropy of shifts on higher-rank graph C*-algebras.

AU - Skalski, Adam G.

AU - Zacharias, J.

N1 - Posted on the arXiv: 9th May 2006. To appear in Houston Journal of Mathematics; accepted in final form: 25th August 2006. RAE_import_type : Internet publication RAE_uoa_type : Pure Mathematics

PY - 2008/5/9

Y1 - 2008/5/9

N2 - Let OΛ be a higher-rank graph C*-algebra. For every p in Z+r there is a canonical completely positive map Φp on OΛ and a subshift Tp on the path space X=Λ∞. We show that ht(Φp)=h(Tp), where ht is Voiculescu's approximation entropy and h the classical topological entropy. For a higher rank Cuntz-Krieger algebra OM we obtain ht(Φp)= log rad(M1 p1... Mr pr), rad being the spectral radius. This generalizes Boca and Goldstein's result for Cuntz-Krieger algebras.

AB - Let OΛ be a higher-rank graph C*-algebra. For every p in Z+r there is a canonical completely positive map Φp on OΛ and a subshift Tp on the path space X=Λ∞. We show that ht(Φp)=h(Tp), where ht is Voiculescu's approximation entropy and h the classical topological entropy. For a higher rank Cuntz-Krieger algebra OM we obtain ht(Φp)= log rad(M1 p1... Mr pr), rad being the spectral radius. This generalizes Boca and Goldstein's result for Cuntz-Krieger algebras.

M3 - Journal article

VL - 34

SP - 269

EP - 282

JO - Houston Journal of Mathematics

JF - Houston Journal of Mathematics

IS - 1

ER -