Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Entropy of shifts on higher-rank graph C*-algebras.
AU - Skalski, Adam G.
AU - Zacharias, J.
N1 - Posted on the arXiv: 9th May 2006. To appear in Houston Journal of Mathematics; accepted in final form: 25th August 2006. RAE_import_type : Internet publication RAE_uoa_type : Pure Mathematics
PY - 2008/5/9
Y1 - 2008/5/9
N2 - Let OΛ be a higher-rank graph C*-algebra. For every p in Z+r there is a canonical completely positive map Φp on OΛ and a subshift Tp on the path space X=Λ∞. We show that ht(Φp)=h(Tp), where ht is Voiculescu's approximation entropy and h the classical topological entropy. For a higher rank Cuntz-Krieger algebra OM we obtain ht(Φp)= log rad(M1 p1... Mr pr), rad being the spectral radius. This generalizes Boca and Goldstein's result for Cuntz-Krieger algebras.
AB - Let OΛ be a higher-rank graph C*-algebra. For every p in Z+r there is a canonical completely positive map Φp on OΛ and a subshift Tp on the path space X=Λ∞. We show that ht(Φp)=h(Tp), where ht is Voiculescu's approximation entropy and h the classical topological entropy. For a higher rank Cuntz-Krieger algebra OM we obtain ht(Φp)= log rad(M1 p1... Mr pr), rad being the spectral radius. This generalizes Boca and Goldstein's result for Cuntz-Krieger algebras.
M3 - Journal article
VL - 34
SP - 269
EP - 282
JO - Houston Journal of Mathematics
JF - Houston Journal of Mathematics
IS - 1
ER -