Home > Research > Publications & Outputs > Estimating extreme waves in the Gulf of Mexico ...
View graph of relations

Estimating extreme waves in the Gulf of Mexico using a simple spatial extremes model

Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSNConference contribution/Paperpeer-review

Published

Standard

Estimating extreme waves in the Gulf of Mexico using a simple spatial extremes model. / Wada, R.; Jonathan, Philip; Waseda, T. et al.
ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. ASME, 2019.

Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSNConference contribution/Paperpeer-review

Harvard

Wada, R, Jonathan, P, Waseda, T & Fan, S 2019, Estimating extreme waves in the Gulf of Mexico using a simple spatial extremes model. in ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. ASME, 38th International Conference on Ocean, Offshore & Arctic Engineering, Glasgow, United Kingdom, 9/06/19. https://doi.org/10.1115/OMAE2019-95442

APA

Wada, R., Jonathan, P., Waseda, T., & Fan, S. (2019). Estimating extreme waves in the Gulf of Mexico using a simple spatial extremes model. In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering ASME. https://doi.org/10.1115/OMAE2019-95442

Vancouver

Wada R, Jonathan P, Waseda T, Fan S. Estimating extreme waves in the Gulf of Mexico using a simple spatial extremes model. In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. ASME. 2019 Epub 2019 Nov 11. doi: 10.1115/OMAE2019-95442

Author

Wada, R. ; Jonathan, Philip ; Waseda, T. et al. / Estimating extreme waves in the Gulf of Mexico using a simple spatial extremes model. ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. ASME, 2019.

Bibtex

@inproceedings{41647855c97b44b08b46856c17e6a5c2,
title = "Estimating extreme waves in the Gulf of Mexico using a simple spatial extremes model",
abstract = "We seek to characterize the behavior of extreme waves in the Gulf of Mexico, using a 109 year-long wave hindcast (GOMOS). The largest waves in this region are driven by strong winds from hurricanes. Design of offshore production systems requires the estimation of extreme metocean conditions corresponding to return periods from 1 year to 10,000 years and beyond. For extrapolation to long return periods, estimation using data for around 100 years from a single location will incur large uncertainties. Approaches such as spatial pooling, cyclone trackshifting and explicit track modeling have been proposed to alleviate this problem. The underlying problem in spatial pooling is the aggregation of dependent data and hence underestimation of uncertainty using na{\"i}ve analysis; techniques such as blockbootstrapping can be used to inflate uncertainties to more realistic levels. The usefulness of cyclone track-shifting or explicit track modeling is dependent on the appropriateness of the physical assumptions underpinning such a model. In this paper, we utilize a simple spatial statistical model for extreme value estimation of significant wave height under tropical cyclones, known as STM-E, proposed in Wada et al. (2018). The STM-E model was developed to characterize extreme waves offshore Japan, also dominated by tropical cyclones. The method relies on the estimation of two distributions from a sample of data, namely the distribution of spatio-Temporal maximum (STM) and the exposure (E). In the current work, we apply STM-E to extreme wave analysis in Gulf of Mexico. The STM-E estimate provides a parsimonious spatially-smooth distribution of extreme waves, with smaller uncertainties per location compared to estimates using data from a single location. We also discuss the estimated characteristics of extreme wave environments in this region.",
author = "R. Wada and Philip Jonathan and T. Waseda and S. Fan",
year = "2019",
month = nov,
day = "11",
doi = "10.1115/OMAE2019-95442",
language = "English",
booktitle = "ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering",
publisher = "ASME",
note = "38th International Conference on Ocean, Offshore & Arctic Engineering, OMAE 2019 ; Conference date: 09-06-2019 Through 14-06-2019",

}

RIS

TY - GEN

T1 - Estimating extreme waves in the Gulf of Mexico using a simple spatial extremes model

AU - Wada, R.

AU - Jonathan, Philip

AU - Waseda, T.

AU - Fan, S.

PY - 2019/11/11

Y1 - 2019/11/11

N2 - We seek to characterize the behavior of extreme waves in the Gulf of Mexico, using a 109 year-long wave hindcast (GOMOS). The largest waves in this region are driven by strong winds from hurricanes. Design of offshore production systems requires the estimation of extreme metocean conditions corresponding to return periods from 1 year to 10,000 years and beyond. For extrapolation to long return periods, estimation using data for around 100 years from a single location will incur large uncertainties. Approaches such as spatial pooling, cyclone trackshifting and explicit track modeling have been proposed to alleviate this problem. The underlying problem in spatial pooling is the aggregation of dependent data and hence underestimation of uncertainty using naïve analysis; techniques such as blockbootstrapping can be used to inflate uncertainties to more realistic levels. The usefulness of cyclone track-shifting or explicit track modeling is dependent on the appropriateness of the physical assumptions underpinning such a model. In this paper, we utilize a simple spatial statistical model for extreme value estimation of significant wave height under tropical cyclones, known as STM-E, proposed in Wada et al. (2018). The STM-E model was developed to characterize extreme waves offshore Japan, also dominated by tropical cyclones. The method relies on the estimation of two distributions from a sample of data, namely the distribution of spatio-Temporal maximum (STM) and the exposure (E). In the current work, we apply STM-E to extreme wave analysis in Gulf of Mexico. The STM-E estimate provides a parsimonious spatially-smooth distribution of extreme waves, with smaller uncertainties per location compared to estimates using data from a single location. We also discuss the estimated characteristics of extreme wave environments in this region.

AB - We seek to characterize the behavior of extreme waves in the Gulf of Mexico, using a 109 year-long wave hindcast (GOMOS). The largest waves in this region are driven by strong winds from hurricanes. Design of offshore production systems requires the estimation of extreme metocean conditions corresponding to return periods from 1 year to 10,000 years and beyond. For extrapolation to long return periods, estimation using data for around 100 years from a single location will incur large uncertainties. Approaches such as spatial pooling, cyclone trackshifting and explicit track modeling have been proposed to alleviate this problem. The underlying problem in spatial pooling is the aggregation of dependent data and hence underestimation of uncertainty using naïve analysis; techniques such as blockbootstrapping can be used to inflate uncertainties to more realistic levels. The usefulness of cyclone track-shifting or explicit track modeling is dependent on the appropriateness of the physical assumptions underpinning such a model. In this paper, we utilize a simple spatial statistical model for extreme value estimation of significant wave height under tropical cyclones, known as STM-E, proposed in Wada et al. (2018). The STM-E model was developed to characterize extreme waves offshore Japan, also dominated by tropical cyclones. The method relies on the estimation of two distributions from a sample of data, namely the distribution of spatio-Temporal maximum (STM) and the exposure (E). In the current work, we apply STM-E to extreme wave analysis in Gulf of Mexico. The STM-E estimate provides a parsimonious spatially-smooth distribution of extreme waves, with smaller uncertainties per location compared to estimates using data from a single location. We also discuss the estimated characteristics of extreme wave environments in this region.

U2 - 10.1115/OMAE2019-95442

DO - 10.1115/OMAE2019-95442

M3 - Conference contribution/Paper

BT - ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering

PB - ASME

T2 - 38th International Conference on Ocean, Offshore & Arctic Engineering

Y2 - 9 June 2019 through 14 June 2019

ER -