Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Euclid preparation
T2 - XXIV. Calibration of the halo mass function in (?)CDM cosmologies
AU - Euclid Collaboration
AU - Castro, T.
AU - Fumagalli, A.
AU - Angulo, R.E.
AU - Bocquet, S.
AU - Borgani, S.
AU - Carbone, C.
AU - Dakin, J.
AU - Dolag, K.
AU - Giocoli, C.
AU - Monaco, P.
AU - Ragagnin, A.
AU - Saro, A.
AU - Sefusatti, E.
AU - Costanzi, M.
AU - Le Brun, A.M.C.
AU - Corasaniti, P.-S.
AU - Amara, A.
AU - Amendola, L.
AU - Baldi, M.
AU - Bender, R.
AU - Bodendorf, C.
AU - Branchini, E.
AU - Brescia, M.
AU - Camera, S.
AU - Capobianco, V.
AU - Carretero, J.
AU - Castellano, M.
AU - Cavuoti, S.
AU - Cimatti, A.
AU - Cledassou, R.
AU - Congedo, G.
AU - Conversi, L.
AU - Copin, Y.
AU - Corcione, L.
AU - Courbin, F.
AU - Da Silva, A.
AU - Degaudenzi, H.
AU - Douspis, M.
AU - Dubath, F.
AU - Duncan, C.A.J.
AU - Dupac, X.
AU - Farrens, S.
AU - Ferriol, S.
AU - Fosalba, P.
AU - Frailis, M.
AU - Franceschi, E.
AU - Galeotta, S.
AU - Garilli, B.
AU - Gillis, B.
AU - Hook, I.
N1 - Export Date: 30 March 2023
PY - 2023/3/14
Y1 - 2023/3/14
N2 - Euclid s photometric galaxy cluster survey has the potential to be a very competitive cosmological probe. The main cosmological probe with observations of clusters is their number count, within which the halo mass function (HMF) is a key theoretical quantity. We present a new calibration of the analytic HMF, at the level of accuracy and precision required for the uncertainty in this quantity to be subdominant with respect to other sources of uncertainty in recovering cosmological parameters from Euclid cluster counts. Our model is calibrated against a suite of N-body simulations using a Bayesian approach taking into account systematic errors arising from numerical effects in the simulation. First, we test the convergence of HMF predictions from different N-body codes, by using initial conditions generated with different orders of Lagrangian Perturbation theory, and adopting different simulation box sizes and mass resolution. Then, we quantify the effect of using different halo finder algorithms, and how the resulting differences propagate to the cosmological constraints. In order to trace the violation of universality in the HMF, we also analyse simulations based on initial conditions characterised by scale-free power spectra with different spectral indexes, assuming both Einsteinde Sitter and standard CDM expansion histories. Based on these results, we construct a fitting function for the HMF that we demonstrate to be sub-percent accurate in reproducing results from 9 different variants of the CDM model including massive neutrinos cosmologies. The calibration systematic uncertainty is largely sub-dominant with respect to the expected precision of future massobservation relations; with the only notable exception of the effect due to the halo finder, that could lead to biased cosmological inference. © 2023 The Authors.
AB - Euclid s photometric galaxy cluster survey has the potential to be a very competitive cosmological probe. The main cosmological probe with observations of clusters is their number count, within which the halo mass function (HMF) is a key theoretical quantity. We present a new calibration of the analytic HMF, at the level of accuracy and precision required for the uncertainty in this quantity to be subdominant with respect to other sources of uncertainty in recovering cosmological parameters from Euclid cluster counts. Our model is calibrated against a suite of N-body simulations using a Bayesian approach taking into account systematic errors arising from numerical effects in the simulation. First, we test the convergence of HMF predictions from different N-body codes, by using initial conditions generated with different orders of Lagrangian Perturbation theory, and adopting different simulation box sizes and mass resolution. Then, we quantify the effect of using different halo finder algorithms, and how the resulting differences propagate to the cosmological constraints. In order to trace the violation of universality in the HMF, we also analyse simulations based on initial conditions characterised by scale-free power spectra with different spectral indexes, assuming both Einsteinde Sitter and standard CDM expansion histories. Based on these results, we construct a fitting function for the HMF that we demonstrate to be sub-percent accurate in reproducing results from 9 different variants of the CDM model including massive neutrinos cosmologies. The calibration systematic uncertainty is largely sub-dominant with respect to the expected precision of future massobservation relations; with the only notable exception of the effect due to the halo finder, that could lead to biased cosmological inference. © 2023 The Authors.
KW - Cosmology: theory
KW - Galaxies: clusters: general
KW - Large-scale structure of Universe
U2 - 10.1051/0004-6361/202244674
DO - 10.1051/0004-6361/202244674
M3 - Journal article
VL - 671
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
SN - 1432-0746
M1 - A100
ER -