Accepted author manuscript, 1.27 MB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - External cavity terahertz quantum cascade laser with a metamaterial/graphene optoelectronic mirror
AU - Almond, Nikita
AU - Qi, Xiaoqiong
AU - Degl'Innocenti, Riccardo
AU - Kindness, Stephen
AU - Michailow, Wladislaw
AU - Wei, Binbin
AU - Braeuninger-Weimer, Philipp
AU - Hofmann, Stephan
AU - Dean, Paul
AU - Indjin, Dragan
AU - Linfield, Edmund
AU - Davies, A. Giles
AU - Rakić, Aleksandar
AU - Beere, Harvey
AU - Ritchie, David
PY - 2020/7/28
Y1 - 2020/7/28
N2 - Photonic engineering of the terahertz emission from a quantum cascade laser (QCL) is fundamental for the exploitation of this unique source in a myriad of applications where it can be implemented, such as spectroscopy, imaging and sensing. Active control of the frequency, power, polarization and beam profile has been achieved through a variety of approaches. In particular, the active control of the emitted frequency, which is difficult to determine a priori, has been achieved through the integration of a photonic structure, and/or by using external cavity arrangements. In this work an external cavity arrangement which implements a metamaterial/graphene optoelectronic mirror as external feedback element is proposed and demonstrated. The reflectivity and dispersion properties of the external active mirror were tuned via electrostatically gating graphene. It was possible to electronically reproduce the mode-switch occurring in a QCL emitting ~ 2.8 THz by mechanically changing the external cavity length formed by an Au mirror. The external cavity arrangement was investigated and described in the framework of self-mixing theory. These results open a way for all-electronic engineering of the QCL emission by the use of a fast reconfigurable external mirror. This approach can uniquely address both power and frequency control, with ~ 100 MHz reconfiguration speeds, using an integrated external element. Furthermore, the metamaterial/graphene mirror strong dispersive properties might be implemented for active mode locking of THz QCLs. Finally, this approach offers a unique opportunity to study the laser dynamics and mode competition in THz QCLs in the self-mixing feedback regime.
AB - Photonic engineering of the terahertz emission from a quantum cascade laser (QCL) is fundamental for the exploitation of this unique source in a myriad of applications where it can be implemented, such as spectroscopy, imaging and sensing. Active control of the frequency, power, polarization and beam profile has been achieved through a variety of approaches. In particular, the active control of the emitted frequency, which is difficult to determine a priori, has been achieved through the integration of a photonic structure, and/or by using external cavity arrangements. In this work an external cavity arrangement which implements a metamaterial/graphene optoelectronic mirror as external feedback element is proposed and demonstrated. The reflectivity and dispersion properties of the external active mirror were tuned via electrostatically gating graphene. It was possible to electronically reproduce the mode-switch occurring in a QCL emitting ~ 2.8 THz by mechanically changing the external cavity length formed by an Au mirror. The external cavity arrangement was investigated and described in the framework of self-mixing theory. These results open a way for all-electronic engineering of the QCL emission by the use of a fast reconfigurable external mirror. This approach can uniquely address both power and frequency control, with ~ 100 MHz reconfiguration speeds, using an integrated external element. Furthermore, the metamaterial/graphene mirror strong dispersive properties might be implemented for active mode locking of THz QCLs. Finally, this approach offers a unique opportunity to study the laser dynamics and mode competition in THz QCLs in the self-mixing feedback regime.
U2 - 10.1063/5.0014251
DO - 10.1063/5.0014251
M3 - Journal article
VL - 117
JO - Applied Physics Letters
JF - Applied Physics Letters
SN - 0003-6951
IS - 4
M1 - 041105
ER -