Home > Research > Publications & Outputs > Fast Advection of Magnetic Fields by Hot Electrons

Associated organisational unit

Links

Text available via DOI:

View graph of relations

Fast Advection of Magnetic Fields by Hot Electrons

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Fast Advection of Magnetic Fields by Hot Electrons. / Willingale, L.; Thomas, A. G. R.; Nilson, P. M.; Kaluza, M. C.; Bandyopadhyay, S.; Dangor, A. E.; Evans, R. G.; Fernandes, P.; Haines, M. G.; Kamperidis, C.; Kingham, R. J.; Minardi, S.; Notley, M.; Ridgers, C. P.; Rozmus, W.; Sherlock, M.; Tatarakis, M.; Wei, M. S.; Najmudin, Z.; Krushelnick, K.

In: Physical review letters, Vol. 105, No. 9, 095001, 24.08.2010.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Willingale, L, Thomas, AGR, Nilson, PM, Kaluza, MC, Bandyopadhyay, S, Dangor, AE, Evans, RG, Fernandes, P, Haines, MG, Kamperidis, C, Kingham, RJ, Minardi, S, Notley, M, Ridgers, CP, Rozmus, W, Sherlock, M, Tatarakis, M, Wei, MS, Najmudin, Z & Krushelnick, K 2010, 'Fast Advection of Magnetic Fields by Hot Electrons', Physical review letters, vol. 105, no. 9, 095001. https://doi.org/10.1103/PhysRevLett.105.095001

APA

Willingale, L., Thomas, A. G. R., Nilson, P. M., Kaluza, M. C., Bandyopadhyay, S., Dangor, A. E., Evans, R. G., Fernandes, P., Haines, M. G., Kamperidis, C., Kingham, R. J., Minardi, S., Notley, M., Ridgers, C. P., Rozmus, W., Sherlock, M., Tatarakis, M., Wei, M. S., Najmudin, Z., & Krushelnick, K. (2010). Fast Advection of Magnetic Fields by Hot Electrons. Physical review letters, 105(9), [095001]. https://doi.org/10.1103/PhysRevLett.105.095001

Vancouver

Willingale L, Thomas AGR, Nilson PM, Kaluza MC, Bandyopadhyay S, Dangor AE et al. Fast Advection of Magnetic Fields by Hot Electrons. Physical review letters. 2010 Aug 24;105(9). 095001. https://doi.org/10.1103/PhysRevLett.105.095001

Author

Willingale, L. ; Thomas, A. G. R. ; Nilson, P. M. ; Kaluza, M. C. ; Bandyopadhyay, S. ; Dangor, A. E. ; Evans, R. G. ; Fernandes, P. ; Haines, M. G. ; Kamperidis, C. ; Kingham, R. J. ; Minardi, S. ; Notley, M. ; Ridgers, C. P. ; Rozmus, W. ; Sherlock, M. ; Tatarakis, M. ; Wei, M. S. ; Najmudin, Z. ; Krushelnick, K. / Fast Advection of Magnetic Fields by Hot Electrons. In: Physical review letters. 2010 ; Vol. 105, No. 9.

Bibtex

@article{d97fe4ffba344da8b57c85d1dc9b6b25,
title = "Fast Advection of Magnetic Fields by Hot Electrons",
abstract = "Experiments where a laser-generated proton beam is used to probe the megagauss strength self-generated magnetic fields from a nanosecond laser interaction with an aluminum target are presented. At intensities of 1015 Wcm(-2) and under conditions of significant fast electron production and strong heat fluxes, the electron mean-free-path is long compared with the temperature gradient scale length and hence nonlocal transport is important for the dynamics of the magnetic field in the plasma. The hot electron flux transports self-generated magnetic fields away from the focal region through the Nernst effect [A. Nishiguchi et al., Phys. Rev. Lett. 53, 262 (1984)] at significantly higher velocities than the fluid velocity. Two-dimensional implicit Vlasov-Fokker-Planck modeling shows that the Nernst effect allows advection and self-generation transports magnetic fields at significantly faster than the ion fluid velocity, v(N)/C(s) approximate to 10.",
keywords = "LASER-PRODUCED PLASMAS, HIGH-INTENSITY LASER, PROTON RADIOGRAPHY, TRANSPORT, IRRADIATION, INSTABILITY, SOLIDS, FUSION, TARGET, PULSE",
author = "L. Willingale and Thomas, {A. G. R.} and Nilson, {P. M.} and Kaluza, {M. C.} and S. Bandyopadhyay and Dangor, {A. E.} and Evans, {R. G.} and P. Fernandes and Haines, {M. G.} and C. Kamperidis and Kingham, {R. J.} and S. Minardi and M. Notley and Ridgers, {C. P.} and W. Rozmus and M. Sherlock and M. Tatarakis and Wei, {M. S.} and Z. Najmudin and K. Krushelnick",
year = "2010",
month = aug,
day = "24",
doi = "10.1103/PhysRevLett.105.095001",
language = "English",
volume = "105",
journal = "Physical review letters",
issn = "1079-7114",
publisher = "American Physical Society",
number = "9",

}

RIS

TY - JOUR

T1 - Fast Advection of Magnetic Fields by Hot Electrons

AU - Willingale, L.

AU - Thomas, A. G. R.

AU - Nilson, P. M.

AU - Kaluza, M. C.

AU - Bandyopadhyay, S.

AU - Dangor, A. E.

AU - Evans, R. G.

AU - Fernandes, P.

AU - Haines, M. G.

AU - Kamperidis, C.

AU - Kingham, R. J.

AU - Minardi, S.

AU - Notley, M.

AU - Ridgers, C. P.

AU - Rozmus, W.

AU - Sherlock, M.

AU - Tatarakis, M.

AU - Wei, M. S.

AU - Najmudin, Z.

AU - Krushelnick, K.

PY - 2010/8/24

Y1 - 2010/8/24

N2 - Experiments where a laser-generated proton beam is used to probe the megagauss strength self-generated magnetic fields from a nanosecond laser interaction with an aluminum target are presented. At intensities of 1015 Wcm(-2) and under conditions of significant fast electron production and strong heat fluxes, the electron mean-free-path is long compared with the temperature gradient scale length and hence nonlocal transport is important for the dynamics of the magnetic field in the plasma. The hot electron flux transports self-generated magnetic fields away from the focal region through the Nernst effect [A. Nishiguchi et al., Phys. Rev. Lett. 53, 262 (1984)] at significantly higher velocities than the fluid velocity. Two-dimensional implicit Vlasov-Fokker-Planck modeling shows that the Nernst effect allows advection and self-generation transports magnetic fields at significantly faster than the ion fluid velocity, v(N)/C(s) approximate to 10.

AB - Experiments where a laser-generated proton beam is used to probe the megagauss strength self-generated magnetic fields from a nanosecond laser interaction with an aluminum target are presented. At intensities of 1015 Wcm(-2) and under conditions of significant fast electron production and strong heat fluxes, the electron mean-free-path is long compared with the temperature gradient scale length and hence nonlocal transport is important for the dynamics of the magnetic field in the plasma. The hot electron flux transports self-generated magnetic fields away from the focal region through the Nernst effect [A. Nishiguchi et al., Phys. Rev. Lett. 53, 262 (1984)] at significantly higher velocities than the fluid velocity. Two-dimensional implicit Vlasov-Fokker-Planck modeling shows that the Nernst effect allows advection and self-generation transports magnetic fields at significantly faster than the ion fluid velocity, v(N)/C(s) approximate to 10.

KW - LASER-PRODUCED PLASMAS

KW - HIGH-INTENSITY LASER

KW - PROTON RADIOGRAPHY

KW - TRANSPORT

KW - IRRADIATION

KW - INSTABILITY

KW - SOLIDS

KW - FUSION

KW - TARGET

KW - PULSE

U2 - 10.1103/PhysRevLett.105.095001

DO - 10.1103/PhysRevLett.105.095001

M3 - Journal article

VL - 105

JO - Physical review letters

JF - Physical review letters

SN - 1079-7114

IS - 9

M1 - 095001

ER -