Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Fast Advection of Magnetic Fields by Hot Electrons
AU - Willingale, L.
AU - Thomas, A. G. R.
AU - Nilson, P. M.
AU - Kaluza, M. C.
AU - Bandyopadhyay, S.
AU - Dangor, A. E.
AU - Evans, R. G.
AU - Fernandes, P.
AU - Haines, M. G.
AU - Kamperidis, C.
AU - Kingham, R. J.
AU - Minardi, S.
AU - Notley, M.
AU - Ridgers, C. P.
AU - Rozmus, W.
AU - Sherlock, M.
AU - Tatarakis, M.
AU - Wei, M. S.
AU - Najmudin, Z.
AU - Krushelnick, K.
PY - 2010/8/24
Y1 - 2010/8/24
N2 - Experiments where a laser-generated proton beam is used to probe the megagauss strength self-generated magnetic fields from a nanosecond laser interaction with an aluminum target are presented. At intensities of 1015 Wcm(-2) and under conditions of significant fast electron production and strong heat fluxes, the electron mean-free-path is long compared with the temperature gradient scale length and hence nonlocal transport is important for the dynamics of the magnetic field in the plasma. The hot electron flux transports self-generated magnetic fields away from the focal region through the Nernst effect [A. Nishiguchi et al., Phys. Rev. Lett. 53, 262 (1984)] at significantly higher velocities than the fluid velocity. Two-dimensional implicit Vlasov-Fokker-Planck modeling shows that the Nernst effect allows advection and self-generation transports magnetic fields at significantly faster than the ion fluid velocity, v(N)/C(s) approximate to 10.
AB - Experiments where a laser-generated proton beam is used to probe the megagauss strength self-generated magnetic fields from a nanosecond laser interaction with an aluminum target are presented. At intensities of 1015 Wcm(-2) and under conditions of significant fast electron production and strong heat fluxes, the electron mean-free-path is long compared with the temperature gradient scale length and hence nonlocal transport is important for the dynamics of the magnetic field in the plasma. The hot electron flux transports self-generated magnetic fields away from the focal region through the Nernst effect [A. Nishiguchi et al., Phys. Rev. Lett. 53, 262 (1984)] at significantly higher velocities than the fluid velocity. Two-dimensional implicit Vlasov-Fokker-Planck modeling shows that the Nernst effect allows advection and self-generation transports magnetic fields at significantly faster than the ion fluid velocity, v(N)/C(s) approximate to 10.
KW - LASER-PRODUCED PLASMAS
KW - HIGH-INTENSITY LASER
KW - PROTON RADIOGRAPHY
KW - TRANSPORT
KW - IRRADIATION
KW - INSTABILITY
KW - SOLIDS
KW - FUSION
KW - TARGET
KW - PULSE
U2 - 10.1103/PhysRevLett.105.095001
DO - 10.1103/PhysRevLett.105.095001
M3 - Journal article
VL - 105
JO - Physical review letters
JF - Physical review letters
SN - 0031-9007
IS - 9
M1 - 095001
ER -