Accepted author manuscript, 9.14 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Rights statement: Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Final published version, 3.6 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Films of rhombohedral graphite as two-dimensional topological semimetals
AU - Slizovskiy, Sergey
AU - McCann, Edward
AU - Koshino, Mikito
AU - Falko, Vladimir
PY - 2019/12/19
Y1 - 2019/12/19
N2 - Topologically non-trivial states appear in a number of materials ranging from spin-orbit-coupling driven topological insulators to graphene. In multivalley conductors, such as mono- and bilayer graphene, despite a zero total Chern number for the entire Brillouin zone, Berry curvature with different signs concentrated in different valleys can affect the material’s transport characteristics. Here we consider thin films of rhombohedral graphite, which appear to retain truly two-dimensional properties up to tens of layers of thickness and host two-dimensional electron states with a large Berry curvature, accompanied by a giant intrinsic magnetic moment carried by electrons. The size of Berry curvature and magnetization in the vicinity of each valley can be controlled by electrostatic gating leading to a tuneable anomalous Hall effect and a peculiar structure of the two-dimensional Landau level spectrum.
AB - Topologically non-trivial states appear in a number of materials ranging from spin-orbit-coupling driven topological insulators to graphene. In multivalley conductors, such as mono- and bilayer graphene, despite a zero total Chern number for the entire Brillouin zone, Berry curvature with different signs concentrated in different valleys can affect the material’s transport characteristics. Here we consider thin films of rhombohedral graphite, which appear to retain truly two-dimensional properties up to tens of layers of thickness and host two-dimensional electron states with a large Berry curvature, accompanied by a giant intrinsic magnetic moment carried by electrons. The size of Berry curvature and magnetization in the vicinity of each valley can be controlled by electrostatic gating leading to a tuneable anomalous Hall effect and a peculiar structure of the two-dimensional Landau level spectrum.
U2 - 10.1038/S42005-019-0268-8
DO - 10.1038/S42005-019-0268-8
M3 - Journal article
VL - 2
JO - Communications Physics
JF - Communications Physics
SN - 2399-3650
M1 - 164
ER -