Home > Research > Publications & Outputs > Fitting models for the joint action of two drug...
View graph of relations

Fitting models for the joint action of two drugs using SAS(R).

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Close
<mark>Journal publication date</mark>10/2008
<mark>Journal</mark>Pharmaceutical Statistics
Issue number4
Volume7
Number of pages13
Pages (from-to)272-284
Publication StatusPublished
<mark>Original language</mark>English

Abstract

Combinations of drugs are increasingly being used for a wide variety of diseases and conditions. A pre-clinical study may allow the investigation of the response at a large number of dose combinations. In determining the response to a drug combination, interest may lie in seeking evidence of synergism, in which the joint action is greater than the actions of the individual drugs, or of antagonism, in which it is less. Two well-known response surface models representing no interaction are Loewe additivity and Bliss independence, and Loewe or Bliss synergism or antagonism is defined relative to these. We illustrate an approach to fitting these models for the case in which the marginal single drug dose-response relationships are represented by four-parameter logistic curves with common upper and lower limits, and where the response variable is normally distributed with a common variance about the dose-response curve. When the dose-response curves are not parallel, the relative potency of the two drugs varies according to the magnitude of the desired effect and the models for Loewe additivity and synergism/antagonism cannot be explicitly expressed. We present an iterative approach to fitting these models without the assumption of parallel dose-response curves. A goodness-of-fit test based on residuals is also described. Implementation using the SAS NLIN procedure is illustrated using data from a pre-clinical study.