Rights statement: An edited version of this paper was published by AGU. Copyright (2021) American Geophysical Union. Otu-Larbi, F., Conte, A., Fares, S., Wild, O., & Ashworth, K. (2021). FORCAsT-gs: Importance of stomatal conductance parameterization to estimated ozone deposition velocity. Journal of Advances in Modeling Earth Systems, 13, e2021MS00258. DOI: 10.1029/2021MS002581. To view the published open abstract, go to http://dx.doi.org and enter the DOI.”
Accepted author manuscript, 2.4 MB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Licence: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - FORCAsT-gs
T2 - Importance of stomatal conductance parameterisation to estimated ozone deposition velocity
AU - Otu-Larbi, Frederick
AU - Conte, Adriano
AU - Fares, Silvano
AU - Wild, Oliver
AU - Ashworth, Kirsti
N1 - An edited version of this paper was published by AGU. Copyright (2021) American Geophysical Union. Otu-Larbi, F., Conte, A., Fares, S., Wild, O., & Ashworth, K. (2021). FORCAsT-gs: Importance of stomatal conductance parameterization to estimated ozone deposition velocity. Journal of Advances in Modeling Earth Systems, 13, e2021MS00258. DOI: 10.1029/2021MS002581. To view the published open abstract, go to http://dx.doi.org and enter the DOI.”
PY - 2021/9/30
Y1 - 2021/9/30
N2 - The role of stomata in regulating photosynthesis and transpiration, and hence governing global biogeochemical cycles and climate, is well-known. Less well-understood, however, is the importance of stomatal control to the exchange of other trace gases between terrestrial vegetation and the atmosphere. Yet these gases determine atmospheric composition, and hence air quality and climate, on scales ranging from local to global, and seconds to decades. Vegetation is a major sink for ground-level ozone via the process of dry deposition and the primary source of many biogenic volatile organic compounds (BVOCs). The rate of dry deposition is largely controlled by the rate of diffusion of a gas through the stomata, and this also governs the emission rate of some key BVOCs. It is critical therefore that canopy-atmosphere exchange models capture the physiological processes controlling stomatal conductance and the transfer of trace gases other than carbon dioxide and water vapour. We incorporate three of the most widely used coupled stomatal conductance-photosynthesis models into the one-dimensional multi-layer FORest Canopy-Atmosphere Transfer (FORCAsT1.0) model to assess the importance of choice of parameterisation on simulated ozone deposition rates. Modelled GPP and stomatal conductance across a broad range of ecosystems differ by up to a factor of two between the best and worst performing model configurations. This leads to divergences in seasonal and diel profiles of ozone deposition velocity of up to 30% and deposition rate of up to 13%, demonstrating that the choice of stomatal conductance parameterisation is critical in accurate quantification of ozone deposition.
AB - The role of stomata in regulating photosynthesis and transpiration, and hence governing global biogeochemical cycles and climate, is well-known. Less well-understood, however, is the importance of stomatal control to the exchange of other trace gases between terrestrial vegetation and the atmosphere. Yet these gases determine atmospheric composition, and hence air quality and climate, on scales ranging from local to global, and seconds to decades. Vegetation is a major sink for ground-level ozone via the process of dry deposition and the primary source of many biogenic volatile organic compounds (BVOCs). The rate of dry deposition is largely controlled by the rate of diffusion of a gas through the stomata, and this also governs the emission rate of some key BVOCs. It is critical therefore that canopy-atmosphere exchange models capture the physiological processes controlling stomatal conductance and the transfer of trace gases other than carbon dioxide and water vapour. We incorporate three of the most widely used coupled stomatal conductance-photosynthesis models into the one-dimensional multi-layer FORest Canopy-Atmosphere Transfer (FORCAsT1.0) model to assess the importance of choice of parameterisation on simulated ozone deposition rates. Modelled GPP and stomatal conductance across a broad range of ecosystems differ by up to a factor of two between the best and worst performing model configurations. This leads to divergences in seasonal and diel profiles of ozone deposition velocity of up to 30% and deposition rate of up to 13%, demonstrating that the choice of stomatal conductance parameterisation is critical in accurate quantification of ozone deposition.
KW - Ozone deposition
KW - gross primary productivity
KW - Model parameterization
KW - Stomatal conductance
KW - ozone damage
KW - forest ecosystems
U2 - 10.1029/2021MS002581
DO - 10.1029/2021MS002581
M3 - Journal article
VL - 13
JO - Journal of Advances in Modeling Earth Systems
JF - Journal of Advances in Modeling Earth Systems
IS - 9
M1 - e2021MS002581
ER -