Rights statement: This is the author’s version of a work that was accepted for publication in International Journal of Adhesion and Adhesives. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Adhesion and Adhesives, 102, 2020 DOI: 10.1016/j.ijadhadh.2020.102649
Accepted author manuscript, 6.34 MB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Fracture mechanisms of hybrid adhesive bonded joints
T2 - effects of the stiffness of constituents
AU - Yousefi Kanani, Armin
AU - Liu, Yiding
AU - J.Hughes, Darren
AU - Ye, Jianqiao
AU - Hou, Xiaonan
N1 - This is the author’s version of a work that was accepted for publication in International Journal of Adhesion and Adhesives. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Adhesion and Adhesives, 102, 2020 DOI: 10.1016/j.ijadhadh.2020.102649
PY - 2020/10/1
Y1 - 2020/10/1
N2 - In this study, different single-lap hybrid joints are used to analyse the effects of the stiffness of the adherends and the adhesive on the failure mechanism. The hybrid joints include a combination of (a) different adherends: aluminium (6082 T6) and PolyPhtalamide (PPA) reinforced with 50% of glass fibre (grade HTV-5H1 from Grivory) and (b) different adhesives: epoxy-based adhesive (Loctite EA 9497) and silane-modified polymer-based adhesive (Teroson MS 9399). Six different single-lap joints are fabricated and analysed. The cohesive parameters of different adhesives against different adherends are determined respectively using single-mode coupons and validated with finite element modelling. Single-lap shear tests are conducted to understand different fracture mechanisms of the joints. Finite element (FE) models using the Cohesive Zone Method (CZM) are developed to simulate the failure of the joints and validated by the testing results. Different failure processes obtained from different hybrid joints combinations are discussed further by analysing the stress distributions along the interfaces of the joints. Finally, the relationship between the stiffness of the constituents of a hybrid adhesive joint and its failure mechanism is summarised. The load vs displacement behaviour of the single-lap joints demonstrate that the stiffness of adherends affects the maximum failure load of the joints with rigid adhesive (epoxy). However, the joint with flexible adhesive (polyurethane) is not sensitive to the stiffness of the adherends. In addition, higher shear stress distribution occurs in the interface adjacent to the adherend with lower stiffness, leading to the failure initiation at the PPA side regardless of adhesive types.
AB - In this study, different single-lap hybrid joints are used to analyse the effects of the stiffness of the adherends and the adhesive on the failure mechanism. The hybrid joints include a combination of (a) different adherends: aluminium (6082 T6) and PolyPhtalamide (PPA) reinforced with 50% of glass fibre (grade HTV-5H1 from Grivory) and (b) different adhesives: epoxy-based adhesive (Loctite EA 9497) and silane-modified polymer-based adhesive (Teroson MS 9399). Six different single-lap joints are fabricated and analysed. The cohesive parameters of different adhesives against different adherends are determined respectively using single-mode coupons and validated with finite element modelling. Single-lap shear tests are conducted to understand different fracture mechanisms of the joints. Finite element (FE) models using the Cohesive Zone Method (CZM) are developed to simulate the failure of the joints and validated by the testing results. Different failure processes obtained from different hybrid joints combinations are discussed further by analysing the stress distributions along the interfaces of the joints. Finally, the relationship between the stiffness of the constituents of a hybrid adhesive joint and its failure mechanism is summarised. The load vs displacement behaviour of the single-lap joints demonstrate that the stiffness of adherends affects the maximum failure load of the joints with rigid adhesive (epoxy). However, the joint with flexible adhesive (polyurethane) is not sensitive to the stiffness of the adherends. In addition, higher shear stress distribution occurs in the interface adjacent to the adherend with lower stiffness, leading to the failure initiation at the PPA side regardless of adhesive types.
KW - Hybrid joint
KW - Joint stiffness
KW - Adherends
KW - Adhesives
KW - Cohesive zone model
KW - Finite element modelling
U2 - 10.1016/j.ijadhadh.2020.102649
DO - 10.1016/j.ijadhadh.2020.102649
M3 - Journal article
VL - 102
JO - International Journal of Adhesion and Adhesives
JF - International Journal of Adhesion and Adhesives
M1 - 102649
ER -