Home > Research > Publications & Outputs > Fully commutative Kazhdan-Lusztig cells.
View graph of relations

Fully commutative Kazhdan-Lusztig cells.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Fully commutative Kazhdan-Lusztig cells. / Green, Richard; Losonczy, J.
In: Annales de L'Institut Fourier, Vol. 51, No. 4, 2001, p. 1025-1045.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Green, R & Losonczy, J 2001, 'Fully commutative Kazhdan-Lusztig cells.', Annales de L'Institut Fourier, vol. 51, no. 4, pp. 1025-1045. <http://aif.cedram.org/aif-bin/item?id=AIF_2001__51_4_1025_0>

APA

Green, R., & Losonczy, J. (2001). Fully commutative Kazhdan-Lusztig cells. Annales de L'Institut Fourier, 51(4), 1025-1045. http://aif.cedram.org/aif-bin/item?id=AIF_2001__51_4_1025_0

Vancouver

Green R, Losonczy J. Fully commutative Kazhdan-Lusztig cells. Annales de L'Institut Fourier. 2001;51(4):1025-1045.

Author

Green, Richard ; Losonczy, J. / Fully commutative Kazhdan-Lusztig cells. In: Annales de L'Institut Fourier. 2001 ; Vol. 51, No. 4. pp. 1025-1045.

Bibtex

@article{3756f569cf634861a4e19a742ca5fc0e,
title = "Fully commutative Kazhdan-Lusztig cells.",
abstract = "We investigate the compatibility of the set of fully commutative elements of a Coxeter group with the various types of Kazhdan-Lusztig cells using a canonical basis for a generalized version of the Temperley-Lieb algebra.",
keywords = "canonical basis, cell theory, Coxeter group, Hecke algebra, Kazhdan-Lusztig basis, Temperley-Lieb algebra",
author = "Richard Green and J. Losonczy",
year = "2001",
language = "English",
volume = "51",
pages = "1025--1045",
journal = "Annales de L'Institut Fourier",
issn = "1777-5310",
publisher = "Association des Annales de l'Institut Fourier",
number = "4",

}

RIS

TY - JOUR

T1 - Fully commutative Kazhdan-Lusztig cells.

AU - Green, Richard

AU - Losonczy, J.

PY - 2001

Y1 - 2001

N2 - We investigate the compatibility of the set of fully commutative elements of a Coxeter group with the various types of Kazhdan-Lusztig cells using a canonical basis for a generalized version of the Temperley-Lieb algebra.

AB - We investigate the compatibility of the set of fully commutative elements of a Coxeter group with the various types of Kazhdan-Lusztig cells using a canonical basis for a generalized version of the Temperley-Lieb algebra.

KW - canonical basis

KW - cell theory

KW - Coxeter group

KW - Hecke algebra

KW - Kazhdan-Lusztig basis

KW - Temperley-Lieb algebra

M3 - Journal article

VL - 51

SP - 1025

EP - 1045

JO - Annales de L'Institut Fourier

JF - Annales de L'Institut Fourier

SN - 1777-5310

IS - 4

ER -