Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Functional roles of ionic currents in a membrane delimited mouse sino-atrial node model
AU - Kharche, S.
AU - Higham, J.
AU - Lei, M.
AU - Zhang, H.
PY - 2011/3/22
Y1 - 2011/3/22
N2 - Functional roles of ionic currents in a membrane delimited sino-atrial node (SAN) cell model were investigated. Ionic currents were blocked and intracellular calcium ([Ca2+]i) buffered to study their effects on action potential (AP) characteristics. The simulations revealed that blocking the hyperpolarization activated current and the T-type calcium current caused an increase of cycle length (CL) due to reduced diastolic depolarization rate (DDR). Blocking of sustained outward (Ist) and sodium currents ( INa,1.1, INa,1.5) had no effect. Blocking the L-type calcium current's Cav1.3 isoform (ICaL1.3) and rapidly activating delayed rectifier arrested pacemaking. Blocking sodiumcalcium exchanger (I NaCa) caused a CL reduction but did not affect DDR. Reducing [Ca 2+]i increased CL marginally. A small increase of [Ca 2+]i arrestedpacemaking. Ist, I Na1.1, and INa1.5are not functional and INaCa is a background current in the model.
AB - Functional roles of ionic currents in a membrane delimited sino-atrial node (SAN) cell model were investigated. Ionic currents were blocked and intracellular calcium ([Ca2+]i) buffered to study their effects on action potential (AP) characteristics. The simulations revealed that blocking the hyperpolarization activated current and the T-type calcium current caused an increase of cycle length (CL) due to reduced diastolic depolarization rate (DDR). Blocking of sustained outward (Ist) and sodium currents ( INa,1.1, INa,1.5) had no effect. Blocking the L-type calcium current's Cav1.3 isoform (ICaL1.3) and rapidly activating delayed rectifier arrested pacemaking. Blocking sodiumcalcium exchanger (I NaCa) caused a CL reduction but did not affect DDR. Reducing [Ca 2+]i increased CL marginally. A small increase of [Ca 2+]i arrestedpacemaking. Ist, I Na1.1, and INa1.5are not functional and INaCa is a background current in the model.
M3 - Conference contribution/Paper
VL - 37
SP - 421
EP - 424
BT - 2010 Computing in Cardiology
PB - IEEE
ER -