Home > Research > Publications & Outputs > GCN2-dependent phosphorylation of eukaryotic tr...
View graph of relations

GCN2-dependent phosphorylation of eukaryotic translation initiation factor-2α in Arabidopsis

Research output: Contribution to Journal/MagazineJournal articlepeer-review

<mark>Journal publication date</mark>08/2008
<mark>Journal</mark>Journal of Experimental Botany
Issue number11
Number of pages11
Pages (from-to)3131-3141
Publication StatusPublished
Early online date4/07/08
<mark>Original language</mark>English


The yeast regulatory protein kinase, general control non-derepressible-2 (GCN2) plays a key role in general amino acid control. GCN2 phosphorylates the α subunit of the trimeric eukaryotic translation initiation factor-2 (eIF2), bringing about a decrease in the general rate of protein synthesis but an increase in the synthesis of GCN4, a transcription factor that promotes the expression of genes encoding enzymes for amino acid biosynthesis. The present study concerned the phosphorylation of Arabidopsis eIF2α (AteIF2α) by the Arabidopsis homologue of GCN2, AtGCN2, and the role of AtGCN2 in regulating genes encoding enzymes of amino acid biosynthesis and responding to virus infection. A null mutant for AtGCN2 called GT8359 was obtained and western analysis confirmed that it lacked AtGCN2 protein. GT8359 was more sensitive than wild-type Arabidopsis to herbicides that affect amino acid biosynthesis. Phosphorylation of AteIF2α occurred in response to herbicide treatment but only in wild-type Arabidopsis, not GT8359, showing it to be AtGCN2-dependent. Expression analysis of genes encoding key enzymes for amino acid biosynthesis and nitrate assimilation revealed little effect of loss of AtGCN2 function in GT8359 except that expression of a nitrate reductase gene, NIA1, was decreased. Analysis of wild-type and GT8359 plants infected with Turnip yellow mosaic virus or Turnip crinkle virus showed that AteIF2α was not phosphorylated.