Home > Research > Publications & Outputs > Generation of GeV protons from 1 PW laser inter...

Associated organisational unit


Text available via DOI:

View graph of relations

Generation of GeV protons from 1 PW laser interaction with near critical density targets

Research output: Contribution to Journal/MagazineJournal articlepeer-review

  • Stepan S. Bulanov
  • Valery Yu. Bychenkov
  • Vladimir Chvykov
  • Galina Kalinchenko
  • Dale William Litzenberg
  • Takeshi Matsuoka
  • Alexander G. R. Thomas
  • Louise Willingale
  • Victor Yanovsky
  • Karl Krushelnick
  • Anatoly Maksimchuk
Article number043105
<mark>Journal publication date</mark>04/2010
<mark>Journal</mark>Physics of Plasmas
Issue number4
Number of pages8
Publication StatusPublished
<mark>Original language</mark>English


The propagation of ultraintense laser pulses through matter is connected with the generation of strong moving magnetic fields in the propagation channel as well as the formation of a thin ion filament along the axis of the channel. Upon exiting the plasma the magnetic field displaces the electrons at the back of the target, generating a quasistatic electric field that accelerates and collimates ions from the filament. Two dimensional particle-in-cell simulations show that a 1 PW laser pulse tightly focused on a near-critical density target is able to accelerate protons up to an energy of 1.3 GeV. Scaling laws and optimal conditions for proton acceleration are established considering the energy depletion of the laser pulse.