Rights statement: © 2018 Springer Nature Limited. All rights reserved. The Author's Accepted Manuscript (the accepted version of the manuscript as submitted by the author) may only be posted 6 months after the paper is published, consistent with our self-archiving embargo. Please note that the Author’s Accepted Manuscript may not be released under a Creative Commons license. For Nature Research Terms of Reuse of archived manuscripts please see: http://www.nature.com/authors/policies/license.html#terms
Accepted author manuscript, 2.49 MB, PDF document
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
<mark>Journal publication date</mark> | 17/09/2018 |
---|---|
<mark>Journal</mark> | Nature Genetics |
Number of pages | 20 |
Publication Status | Published |
<mark>Original language</mark> | English |
High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.