Home > Research > Publications & Outputs > Global agricultural N 2 O emission reduction st...

Links

Text available via DOI:

View graph of relations

Global agricultural N 2 O emission reduction strategies deliver climate benefits with minimal impact on stratospheric O 3 recovery

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
  • James Weber
  • James Keeble
  • Nathan Luke Abraham
  • David J. Beerling
  • Maria Val Martin
Close
Article number121
<mark>Journal publication date</mark>7/06/2024
<mark>Journal</mark>npj Climate and Atmospheric Science
Issue number1
Volume7
Publication StatusPublished
<mark>Original language</mark>English

Abstract

Agricultural nitrous oxide (N2O) emission reduction strategies are required given the potency of N2O as a greenhouse gas. However, the growing influence of N2O on stratospheric ozone (O3) with declining stratospheric chlorine means the wider atmospheric impact of N2O reductions requires investigation. We calculate a N2O emission reduction of 1.35 TgN2O yr-1 (~5% of 2020 emissions) using spatially separate deployment of nitrification inhibitors ($70–113 tCO2e−1) and crushed basalt (no-cost co-benefit) which also sequesters CO2. In Earth System model simulations for 2025–2075 under high (SSP3-7.0) and low (SSP1-2.6) surface warming scenarios, this N2O mitigation reduces NOx-driven O3 destruction, driving regional stratospheric O3 increases but with minimal impact on total O3 column recovery. By 2075, the radiative forcing of the combined N2O and CO2 reductions equates to a beneficial 9–11 ppm CO2 removal. Our results support targeted agricultural N2O emission reductions for helping nations reach net-zero without hindering O3 recovery.