Rights statement: © 2014 Zhuang et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
Final published version, 991 KB, PDF document
Available under license: CC BY
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Graphitic platform for self-catalysed InAs nanowires growth by molecular beam epitaxy
AU - Zhuang, Qiandong
AU - Anyebe, Ezekiel
AU - Sanchez, A. M.
AU - Rajpalke, Mohana K.
AU - Veal, Tim D.
AU - Zhukov, Alexander
AU - Robinson, Benjamin
AU - Anderson, Frazer
AU - Kolosov, Oleg
AU - Falko, Vladimir
N1 - © 2014 Zhuang et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
PY - 2014/6/25
Y1 - 2014/6/25
N2 - We report the self-catalysed growth of InAs nanowires (NWs) on graphite thin films using molecular beam epitaxy via a droplet-assisted technique. Through optimising metal droplets, we obtained vertically aligned InAs NWs with highly uniform diameter along their entire length. In comparison with conventional InAs NWs grown on Si (111), the graphite surface led to significant effects on the NWs geometry grown on it, i.e. larger diameter, shorter length with lower number density, which were ascribed to the absence of dangling bonds on the graphite surface. The axial growth rate of the NWs has a strong dependence on growth time, which increases quickly in the beginning then slows down after the NWs reach a length of approximately 0.8 μm. This is attributed to the combined axial growth contributions from the surface impingement and sidewall impingement together with the desorption of adatoms during the diffusion. The growth of InAs NWs on graphite was proposed following a vapour-solid mechanism. High-resolution transmission electron microscopy reveals that the NW has a mixture of pure zinc-blende and wurtzite insertions.
AB - We report the self-catalysed growth of InAs nanowires (NWs) on graphite thin films using molecular beam epitaxy via a droplet-assisted technique. Through optimising metal droplets, we obtained vertically aligned InAs NWs with highly uniform diameter along their entire length. In comparison with conventional InAs NWs grown on Si (111), the graphite surface led to significant effects on the NWs geometry grown on it, i.e. larger diameter, shorter length with lower number density, which were ascribed to the absence of dangling bonds on the graphite surface. The axial growth rate of the NWs has a strong dependence on growth time, which increases quickly in the beginning then slows down after the NWs reach a length of approximately 0.8 μm. This is attributed to the combined axial growth contributions from the surface impingement and sidewall impingement together with the desorption of adatoms during the diffusion. The growth of InAs NWs on graphite was proposed following a vapour-solid mechanism. High-resolution transmission electron microscopy reveals that the NW has a mixture of pure zinc-blende and wurtzite insertions.
KW - Nanowires
KW - Graphite
KW - Molecular beam epitaxy
U2 - 10.1186/1556-276X-9-321
DO - 10.1186/1556-276X-9-321
M3 - Journal article
VL - 9
JO - Nanoscale Research Letters
JF - Nanoscale Research Letters
SN - 1556-276X
M1 - 321
ER -