We discuss the definitions of standard clocks in theories of gravitation. These definitions are motivated by the invariance of actions under different gauge symmetries. We contrast the definition of a standard Weyl clock with that of a clock in general relativity and argue that the historical criticisms of theories based on non-metric compatible connections by Einstein, Pauli and others must be considered in the context of Weyl's original gauge symmetry. We argue that standard Einsteinian clocks can be defined in non-Riemannian theories of gravitation by adopting the Weyl group as a local gauge symmetry that preserves the metric and discuss the hypothesis that atomic clocks may be adopted to measure proper time in the presence of non-Riemannian gravitational fields. These ideas are illustrated in terms of a recently developed model of gravitation based on a non-Riemannian spacetime geometry.