Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Green Extraction of Graphene from Natural Mineral Shungite
AU - Novikova, Anastasia
AU - Karabchevsky, Alina
N1 - Publisher Copyright: © 2022 by the authors.
PY - 2022/12/7
Y1 - 2022/12/7
N2 - Conventional fabrication methods to produce graphene are cumbersome, expensive, and not ecologically friendly. This is due to the fact that the processing of a large volume of raw materials requires large amounts of acids and alkalis which, in turn, require special disposal. Therefore, it is necessary to develop new technologies or to refine existing ones for the production of graphene—and to create new, ecologically-safe and effective methods. Here, we utilized physical sonication to extract graphene films from natural mineral shungite rock. From our study of the structure of shungite by Raman spectrometry and X-ray phase analysis, we found that shungite is characterized by graphite-like mineral structures. Transmission electron microscopy images obtained from the processed material revealed graphene films—with surfaces as small as 200 nanometers long and several layers wide. Our green method of fabicating graphene can be widely used in a variety of fields, from electro-optics to ecology, to list a few.
AB - Conventional fabrication methods to produce graphene are cumbersome, expensive, and not ecologically friendly. This is due to the fact that the processing of a large volume of raw materials requires large amounts of acids and alkalis which, in turn, require special disposal. Therefore, it is necessary to develop new technologies or to refine existing ones for the production of graphene—and to create new, ecologically-safe and effective methods. Here, we utilized physical sonication to extract graphene films from natural mineral shungite rock. From our study of the structure of shungite by Raman spectrometry and X-ray phase analysis, we found that shungite is characterized by graphite-like mineral structures. Transmission electron microscopy images obtained from the processed material revealed graphene films—with surfaces as small as 200 nanometers long and several layers wide. Our green method of fabicating graphene can be widely used in a variety of fields, from electro-optics to ecology, to list a few.
KW - green graphene
KW - mineral
KW - produce graphene
KW - shungite
KW - sonication
U2 - 10.3390/nano12244356
DO - 10.3390/nano12244356
M3 - Journal article
AN - SCOPUS:85144879544
VL - 12
JO - Nanomaterials
JF - Nanomaterials
SN - 2079-4991
IS - 24
M1 - 4356
ER -