Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Green-Extraction of Graphene from Natural Mineral Shungite
AU - Novikova, Anastasia
AU - Karabchevsky, Alina
N1 - Publisher Copyright: © 2023, META Conference. All rights reserved.
PY - 2023/7/18
Y1 - 2023/7/18
N2 - production also increases. In our work, we used physical ultrasound treatment without the addition of surfactants to extract graphene films from a mineral of shungite. From our study of the structures of the resulting graphene, we see that they have the form of films with a surface length of 200 nm with a graphene structure with a hexagonal center and a lattice pitch of 0.335 nm. We investigated two regions of shungite, as illustrated in Figure 1a,d, and conducted EDS analysis on each region. Our results indicate that the completely dark areas in region 1 (Fig. 1b) and 21 (Fig. 1e) are composed entirely of carbon. Conversely, region 2 (Fig. 1c) and 21 (Fig. 1f) is composed of carbon containing impurities, including low concentrations of oxygen, silicon, aluminum, nickel, iron, and vanadium.
AB - production also increases. In our work, we used physical ultrasound treatment without the addition of surfactants to extract graphene films from a mineral of shungite. From our study of the structures of the resulting graphene, we see that they have the form of films with a surface length of 200 nm with a graphene structure with a hexagonal center and a lattice pitch of 0.335 nm. We investigated two regions of shungite, as illustrated in Figure 1a,d, and conducted EDS analysis on each region. Our results indicate that the completely dark areas in region 1 (Fig. 1b) and 21 (Fig. 1e) are composed entirely of carbon. Conversely, region 2 (Fig. 1c) and 21 (Fig. 1f) is composed of carbon containing impurities, including low concentrations of oxygen, silicon, aluminum, nickel, iron, and vanadium.
M3 - Conference contribution/Paper
T3 - META 2023 in Paris
SP - 588
EP - 589
BT - META 2023 13th International Conference on Metamaterials, Photonic Crystals and Plasmonics
PB - META Conference
T2 - 13th International Conference on Metamaterials, Photonic Crystals and Plasmonics, META 2023
Y2 - 18 July 2023 through 21 July 2023
ER -