Rights statement: © 2017. The American Astronomical Society. All rights reserved.
Accepted author manuscript, 1.96 MB, PDF document
Available under license: Unspecified
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Herschel and Hubble Study of a Lensed Massive Dusty Starbursting Galaxy at z ˜ 3
AU - Nayyeri, H.
AU - Cooray, A.
AU - Jullo, E.
AU - Riechers, D. A.
AU - Leung, T. K. D.
AU - Frayer, D. T.
AU - Gurwell, M. A.
AU - Harris, A. I.
AU - Ivison, R. J.
AU - Negrello, M.
AU - Oteo, I.
AU - Amber, S.
AU - Baker, A. J.
AU - Calanog, J.
AU - Casey, C. M.
AU - Dannerbauer, H.
AU - De Zotti, G.
AU - Eales, S.
AU - Fu, H.
AU - Michałowski, M. J.
AU - Timmons, N.
AU - Wardlow, J. L.
N1 - © 2017. The American Astronomical Society. All rights reserved.
PY - 2017/7/25
Y1 - 2017/7/25
N2 - We present the results of combined deep Keck/NIRC2, HST/WFC3 near-infrared, and Herschel far-infrared observations of an extremely star-forming dusty lensed galaxy identified from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS J133542.9+300401). The galaxy is gravitationally lensed by a massive WISE-identified galaxy cluster at z ˜ 1. The lensed galaxy is spectroscopically confirmed at z = 2.685 from detection of {CO} (1\to 0) by GBT and from detection of {CO} (3\to 2) obtained with CARMA. We use the combined spectroscopic and imaging observations to construct a detailed model of the background dusty lensed submillimeter galaxy (SMG), which allows us to study the source plane properties of the target. The best-fit lens model provides magnifications of μ star = 2.10 ± 0.11 and μ dust = 2.02 ± 0.06 for the stellar and dust components, respectively. Multiband data yield a magnification-corrected star formation rate of 1900(±200) M ⊙ yr-1 and a stellar mass of {6.8}-2.7+0.9× {10}11 {M}⊙ , consistent with a main sequence of star formation at z ˜ 2.6. The CO observations yield a molecular gas mass of 8.3(±1.0) × 1010 M ⊙, similar to the most massive star-forming galaxies, which together with the high star formation efficiency, are responsible for the intense observed star formation rates. The lensed SMG has a very short gas depletion timescale of ˜40 Myr. The high stellar mass and small gas fractions observed indicate that the lensed SMG likely has already formed most of its stellar mass and could be a progenitor of the most massive elliptical galaxies found in the local universe. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
AB - We present the results of combined deep Keck/NIRC2, HST/WFC3 near-infrared, and Herschel far-infrared observations of an extremely star-forming dusty lensed galaxy identified from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS J133542.9+300401). The galaxy is gravitationally lensed by a massive WISE-identified galaxy cluster at z ˜ 1. The lensed galaxy is spectroscopically confirmed at z = 2.685 from detection of {CO} (1\to 0) by GBT and from detection of {CO} (3\to 2) obtained with CARMA. We use the combined spectroscopic and imaging observations to construct a detailed model of the background dusty lensed submillimeter galaxy (SMG), which allows us to study the source plane properties of the target. The best-fit lens model provides magnifications of μ star = 2.10 ± 0.11 and μ dust = 2.02 ± 0.06 for the stellar and dust components, respectively. Multiband data yield a magnification-corrected star formation rate of 1900(±200) M ⊙ yr-1 and a stellar mass of {6.8}-2.7+0.9× {10}11 {M}⊙ , consistent with a main sequence of star formation at z ˜ 2.6. The CO observations yield a molecular gas mass of 8.3(±1.0) × 1010 M ⊙, similar to the most massive star-forming galaxies, which together with the high star formation efficiency, are responsible for the intense observed star formation rates. The lensed SMG has a very short gas depletion timescale of ˜40 Myr. The high stellar mass and small gas fractions observed indicate that the lensed SMG likely has already formed most of its stellar mass and could be a progenitor of the most massive elliptical galaxies found in the local universe. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
KW - gravitational lensing: strong
KW - submillimeter: galaxies
U2 - 10.3847/1538-4357/aa7aa0
DO - 10.3847/1538-4357/aa7aa0
M3 - Journal article
VL - 844
JO - The Astrophysical Journal
JF - The Astrophysical Journal
SN - 0004-637X
IS - 1
M1 - 82
ER -