Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Article number | 065026 |
---|---|
<mark>Journal publication date</mark> | 23/11/2022 |
<mark>Journal</mark> | Biomedical Materials |
Issue number | 6 |
Volume | 17 |
Number of pages | 13 |
Publication Status | Published |
<mark>Original language</mark> | English |
As a typical metal-organic framework (MOF), Mg-MOF74 can release biocompatible Mg 2+when the framework is degraded, and it has the potential to be used as filler in the field of bone tissue engineering. However, Mg-MOF74 has poor stability in aqueous environment and limited antibacterial ability, which limit its further development and applications. In this work, MgCu-MOF74 particles with different Cu content were synthesized through a facile one-step hydrothermal method. The physicochemical properties and water stability of the synthesized powders were characterized. The osteogenic potential of the MgCu-MOF74 particles on human osteogenic sarcoma cells (SaOS-2) was evaluated. The hybrid MgCu-MOF74 exhibited favorable water stability. These results indicated that MgCu-MOF74 enhanced cellular viability, alkaline phosphatase levels, collagen (COL) synthesis and osteogenesis-related gene expression. Moreover, the samples doped with Cu 2+were more sensitive to the acidic microenvironment produced by bacteria, and exhibited stronger antibacterial ability than Mg-MOF74. In conclusion, MgCu-MOF-74 with good water stability, osteogenic ability and antibacterial ability, which could be attributed to the doping of Cu 2+. Hence, MgCu-MOF74 shows great potential as a novel medical bio-functional fillers for the treatment of bone defects.