Home > Research > Publications & Outputs > Highly-effective gating of single-molecule junc...

Associated organisational unit

Links

Text available via DOI:

View graph of relations

Highly-effective gating of single-molecule junctions: an electrochemical approach

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Highly-effective gating of single-molecule junctions: an electrochemical approach. / Baghernejad, Masoud; Manrique, David Zsolt; Li, Chen et al.
In: Chemical Communications, Vol. 50, No. 100, 28.12.2014, p. 15975-15978.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Baghernejad, M, Manrique, DZ, Li, C, Pope, T, Zhumaev, U, Pobelov, I, Moreno-Garcia, P, Kaliginedi, V, Huang, C, Hong, W, Lambert, C & Wandlowski, T 2014, 'Highly-effective gating of single-molecule junctions: an electrochemical approach', Chemical Communications, vol. 50, no. 100, pp. 15975-15978. https://doi.org/10.1039/c4cc06519k

APA

Baghernejad, M., Manrique, D. Z., Li, C., Pope, T., Zhumaev, U., Pobelov, I., Moreno-Garcia, P., Kaliginedi, V., Huang, C., Hong, W., Lambert, C., & Wandlowski, T. (2014). Highly-effective gating of single-molecule junctions: an electrochemical approach. Chemical Communications, 50(100), 15975-15978. https://doi.org/10.1039/c4cc06519k

Vancouver

Baghernejad M, Manrique DZ, Li C, Pope T, Zhumaev U, Pobelov I et al. Highly-effective gating of single-molecule junctions: an electrochemical approach. Chemical Communications. 2014 Dec 28;50(100):15975-15978. Epub 2014 Nov 4. doi: 10.1039/c4cc06519k

Author

Baghernejad, Masoud ; Manrique, David Zsolt ; Li, Chen et al. / Highly-effective gating of single-molecule junctions : an electrochemical approach. In: Chemical Communications. 2014 ; Vol. 50, No. 100. pp. 15975-15978.

Bibtex

@article{5efcdc0545d2422395f9f291eac3765d,
title = "Highly-effective gating of single-molecule junctions: an electrochemical approach",
abstract = "We report an electrochemical gating approach with similar to 100% efficiency to tune the conductance of single-molecule 4,40' bipyridine junctions using scanning-tunnelling-microscopy break junction technique. Density functional theory calculation suggests that electrochemical gating aligns molecular frontier orbitals relative to the electrode Fermi level, switching the molecule from an off resonance state to {"}partial'' resonance.",
keywords = "ELECTRON-TRANSPORT, CONDUCTANCE, SPECTROSCOPY, STATES, METAL",
author = "Masoud Baghernejad and Manrique, {David Zsolt} and Chen Li and Thomas Pope and Ulmas Zhumaev and Ilya Pobelov and Pavel Moreno-Garcia and Veerabhadrarao Kaliginedi and Cancan Huang and Wenjing Hong and Colin Lambert and Thomas Wandlowski",
year = "2014",
month = dec,
day = "28",
doi = "10.1039/c4cc06519k",
language = "English",
volume = "50",
pages = "15975--15978",
journal = "Chemical Communications",
issn = "1359-7345",
publisher = "Royal Society of Chemistry",
number = "100",

}

RIS

TY - JOUR

T1 - Highly-effective gating of single-molecule junctions

T2 - an electrochemical approach

AU - Baghernejad, Masoud

AU - Manrique, David Zsolt

AU - Li, Chen

AU - Pope, Thomas

AU - Zhumaev, Ulmas

AU - Pobelov, Ilya

AU - Moreno-Garcia, Pavel

AU - Kaliginedi, Veerabhadrarao

AU - Huang, Cancan

AU - Hong, Wenjing

AU - Lambert, Colin

AU - Wandlowski, Thomas

PY - 2014/12/28

Y1 - 2014/12/28

N2 - We report an electrochemical gating approach with similar to 100% efficiency to tune the conductance of single-molecule 4,40' bipyridine junctions using scanning-tunnelling-microscopy break junction technique. Density functional theory calculation suggests that electrochemical gating aligns molecular frontier orbitals relative to the electrode Fermi level, switching the molecule from an off resonance state to "partial'' resonance.

AB - We report an electrochemical gating approach with similar to 100% efficiency to tune the conductance of single-molecule 4,40' bipyridine junctions using scanning-tunnelling-microscopy break junction technique. Density functional theory calculation suggests that electrochemical gating aligns molecular frontier orbitals relative to the electrode Fermi level, switching the molecule from an off resonance state to "partial'' resonance.

KW - ELECTRON-TRANSPORT

KW - CONDUCTANCE

KW - SPECTROSCOPY

KW - STATES

KW - METAL

U2 - 10.1039/c4cc06519k

DO - 10.1039/c4cc06519k

M3 - Journal article

VL - 50

SP - 15975

EP - 15978

JO - Chemical Communications

JF - Chemical Communications

SN - 1359-7345

IS - 100

ER -