Home > Research > Publications & Outputs > Hunt's formula for SUq(N) and Uq(N)

Electronic data

  • Hunt-FinalVersionForPURE.pdf

    Rights statement: .

    Accepted author manuscript, 544 KB, PDF document

    Available under license: CC BY: Creative Commons Attribution 4.0 International License

Links

Text available via DOI:

View graph of relations

Hunt's formula for SUq(N) and Uq(N)

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Hunt's formula for SUq(N) and Uq(N). / Franz, Uwe; Kula, Anna; Lindsay, Martin et al.
In: Indiana University Mathematics Journal, Vol. 72, No. 4, 02.09.2023, p. 1717-1748.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Franz, U, Kula, A, Lindsay, M & Skeide, M 2023, 'Hunt's formula for SUq(N) and Uq(N)', Indiana University Mathematics Journal, vol. 72, no. 4, pp. 1717-1748. https://doi.org/10.1512/iumj.2023.72.9485

APA

Franz, U., Kula, A., Lindsay, M., & Skeide, M. (2023). Hunt's formula for SUq(N) and Uq(N). Indiana University Mathematics Journal, 72(4), 1717-1748. https://doi.org/10.1512/iumj.2023.72.9485

Vancouver

Franz U, Kula A, Lindsay M, Skeide M. Hunt's formula for SUq(N) and Uq(N). Indiana University Mathematics Journal. 2023 Sept 2;72(4):1717-1748. doi: 10.1512/iumj.2023.72.9485

Author

Franz, Uwe ; Kula, Anna ; Lindsay, Martin et al. / Hunt's formula for SUq(N) and Uq(N). In: Indiana University Mathematics Journal. 2023 ; Vol. 72, No. 4. pp. 1717-1748.

Bibtex

@article{f813b6dece8e4c23a02cd23bcee3f907,
title = "Hunt's formula for SUq(N) and Uq(N)",
abstract = "For any L{\'e}vy process on the quantum group SUq(N), where 0 < q < 1 and N ∈ N,a L{\'e}vy-Khintchine type decomposition of its generating functional is given, together with an analogue of Hunt's formula. The non-gaussian component is shown to further decompose into generating functionals that live on the quantum subgroups SUq(n), for n <= N. Corresponding results are also given for the quantum groups Uq(N).",
keywords = "Quantum L{\'e}vy process, convolution semigroup, compact quantum group, CQG algebra, generating functional, Sch{\"u}rmann triple",
author = "Uwe Franz and Anna Kula and Martin Lindsay and Michael Skeide",
year = "2023",
month = sep,
day = "2",
doi = "10.1512/iumj.2023.72.9485",
language = "English",
volume = "72",
pages = "1717--1748",
journal = "Indiana University Mathematics Journal",
issn = "0022-2518",
publisher = "Indiana University",
number = "4",

}

RIS

TY - JOUR

T1 - Hunt's formula for SUq(N) and Uq(N)

AU - Franz, Uwe

AU - Kula, Anna

AU - Lindsay, Martin

AU - Skeide, Michael

PY - 2023/9/2

Y1 - 2023/9/2

N2 - For any Lévy process on the quantum group SUq(N), where 0 < q < 1 and N ∈ N,a Lévy-Khintchine type decomposition of its generating functional is given, together with an analogue of Hunt's formula. The non-gaussian component is shown to further decompose into generating functionals that live on the quantum subgroups SUq(n), for n <= N. Corresponding results are also given for the quantum groups Uq(N).

AB - For any Lévy process on the quantum group SUq(N), where 0 < q < 1 and N ∈ N,a Lévy-Khintchine type decomposition of its generating functional is given, together with an analogue of Hunt's formula. The non-gaussian component is shown to further decompose into generating functionals that live on the quantum subgroups SUq(n), for n <= N. Corresponding results are also given for the quantum groups Uq(N).

KW - Quantum Lévy process

KW - convolution semigroup

KW - compact quantum group

KW - CQG algebra

KW - generating functional

KW - Schürmann triple

U2 - 10.1512/iumj.2023.72.9485

DO - 10.1512/iumj.2023.72.9485

M3 - Journal article

VL - 72

SP - 1717

EP - 1748

JO - Indiana University Mathematics Journal

JF - Indiana University Mathematics Journal

SN - 0022-2518

IS - 4

ER -