Accepted author manuscript, 1.98 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version, 5.14 MB, PDF document
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Hydrogen catalytic performance of hybrid Fe3O4/FeS2/g-C3N4 nanocomposite structures
AU - Alshammari, M.
AU - Alhassan, S.
AU - Alshammari, K.
AU - Alotaibi, T.
AU - Alshammari, A.H.
AU - Alotibi, S.
AU - Taha, T.A.M.
AU - Ismael, A.
PY - 2023/10/31
Y1 - 2023/10/31
N2 - In this work, Fe 3O 4/FeS 2/g-C 3N 4 nanocomposites were developed for catalytic hydrogen generation from sodium borohydride. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and environmental scanning electron microscopy (ESEM) were used to analyze these nanocomposites. The XRD diffraction peaks of Fe 3O 4 and FeS 2 cubic phase showed an average crystal size of calculation of 15 and 20 nm. ESEM micrographs showed a 2D broken up sheet structure having more edge sites. The BET surface areas for S@g-C 3N 4, 1.0, 2.0, and 3.0 wt% Fe 3O 4/FeS 2 were 40, 109, 137 and 162 m 2/g, respectively. Even though Fe 3O 4/FeS 2 were incorporated into the nanosheet, the pore size was increased from 2.0 to 2.15 nm. S@g-C 3N 4 has an average band gap of 2.60 eV that decreased to 2.30, 2.21 and 2.18 eV at 1.0, 2.0 and 3.0 wt% of FeS 2. In addition, Fe 3O 4/FeS 2/g-C 3N 4 nanosheets showed an emission band at 460 nm. Moreover, the intensity of this band decreased as the content of Fe 3O 4/FeS 2 reached 3.0 wt%. The rate of hydrogen production is accelerated as the percentage of Fe 3O 4/FeS 2 increased from 1.0 to 3.0 wt%. The sample 3.0 wt% Fe 3O 4/FeS 2 showed the best rate of hydrogen production (8480 mL/g·min).
AB - In this work, Fe 3O 4/FeS 2/g-C 3N 4 nanocomposites were developed for catalytic hydrogen generation from sodium borohydride. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and environmental scanning electron microscopy (ESEM) were used to analyze these nanocomposites. The XRD diffraction peaks of Fe 3O 4 and FeS 2 cubic phase showed an average crystal size of calculation of 15 and 20 nm. ESEM micrographs showed a 2D broken up sheet structure having more edge sites. The BET surface areas for S@g-C 3N 4, 1.0, 2.0, and 3.0 wt% Fe 3O 4/FeS 2 were 40, 109, 137 and 162 m 2/g, respectively. Even though Fe 3O 4/FeS 2 were incorporated into the nanosheet, the pore size was increased from 2.0 to 2.15 nm. S@g-C 3N 4 has an average band gap of 2.60 eV that decreased to 2.30, 2.21 and 2.18 eV at 1.0, 2.0 and 3.0 wt% of FeS 2. In addition, Fe 3O 4/FeS 2/g-C 3N 4 nanosheets showed an emission band at 460 nm. Moreover, the intensity of this band decreased as the content of Fe 3O 4/FeS 2 reached 3.0 wt%. The rate of hydrogen production is accelerated as the percentage of Fe 3O 4/FeS 2 increased from 1.0 to 3.0 wt%. The sample 3.0 wt% Fe 3O 4/FeS 2 showed the best rate of hydrogen production (8480 mL/g·min).
KW - NaBH4
KW - Fe3O4/FeS2 nanosheet
KW - Hydrogen production
KW - Methanolysis
U2 - 10.1016/j.diamond.2023.110214
DO - 10.1016/j.diamond.2023.110214
M3 - Journal article
VL - 138
JO - Diamond and Related Materials
JF - Diamond and Related Materials
SN - 0925-9635
M1 - 110214
ER -