Home > Research > Publications & Outputs > Hydrogen-rich supernovae beyond the neutrino-dr...

Links

Text available via DOI:

View graph of relations

Hydrogen-rich supernovae beyond the neutrino-driven core-collapse paradigm

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
  • G. Terreran
  • M. L. Pumo
  • T.W. Chen
  • T. J. Moriya
  • F. Taddia
  • L. Dessart
  • L. Zampieri
  • S. J. Smartt
  • S. Benetti
  • C. Inserra
  • E. Cappellaro
  • M. Nicholl
  • A. Wyrzykowski
  • A. Udalski
  • D. A. Howell
  • C. McCully
  • S. Valenti
  • K. Maguire
  • M. Sullivan
  • O. Yaron
  • D. R. Young
  • M. Della Valle
  • N. Elias-Rosa
  • A. Gal-Yam
  • A. Jerkstrand
  • E. Kankare
  • A. Pastorello
  • J. Sollerman
  • M. Turatto
  • Z. Kostrzewa-Rutkowska
  • S. Kozłowski
  • P. Mróz
  • M. Pawlak
  • P. Pietrukowicz
  • R. Poleski
  • D. Skowron
  • J. Skowron
  • I. Soszyński
  • M. K. Szymański
  • K. Ulaczyk
Close
<mark>Journal publication date</mark>31/10/2017
<mark>Journal</mark>Nature Astronomy
Issue number10
Volume1
Number of pages8
Pages (from-to)713-720
Publication StatusPublished
Early online date18/09/17
<mark>Original language</mark>English

Abstract

Type II supernovae are the final stage of massive stars (above 8 M ·) which retain part of their hydrogen-rich envelope at the moment of explosion. They typically eject up to 15 M · of material, with peak magnitudes of-17.5 mag and energies in the order of 1051 erg, which can be explained by neutrino-driven explosions and neutron star formation. Here, we present our study of OGLE-2014-SN-073, one of the brightest type II supernovae ever discovered, with an unusually broad lightcurve combined with high ejecta velocities. From our hydrodynamical modelling, we infer a remarkable ejecta mass of 60-16+{42} 60-16 + 42 M · and a relatively high explosion energy of 12.4-5.913.0× 1051 12.4-5.9 + 13.0 × 1 0 51 erg. We show that this object belongs, along with a very small number of other hydrogen-rich supernovae, to an energy regime that is not explained by standard core-collapse neutrino-driven explosions. We compare the quantities inferred by the hydrodynamical modelling with the expectations of various exploding scenarios and attempt to explain the high energy and luminosity released. We find some qualitative similarities with pair-instability supernovae, although the prompt injection of energy by a magnetar seems to be a viable alternative explanation for such an extreme event.

Bibliographic note

Publisher Copyright: © 2017 The Author(s).