Home > Research > Publications & Outputs > Input Uncertainty Quantification for Quantiles

Electronic data

  • con107s3-file1

    Rights statement: ©2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

    Accepted author manuscript, 174 KB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Input Uncertainty Quantification for Quantiles

Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSNConference contribution/Paperpeer-review

Published
Publication date23/01/2023
Host publication2022 Winter Simulation Conference (WSC)
EditorsB. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, P. Lendermann
PublisherIEEE
Pages97-108
Number of pages12
ISBN (electronic)9781665476614
ISBN (print)9781665476621
<mark>Original language</mark>English

Abstract

Input models that drive stochastic simulations are often estimated from real-world samples of data. This leads to uncertainty in the input models that propagates through to the simulation outputs. Input uncertainty typically refers to the variance of the output performance measure due to the estimated input models. Many methods exist for quantifying input uncertainty when the performance measure is the sample mean of the simulation outputs, however quantiles that are frequently used to evaluate simulation output risk cannot be incorporated into this framework. Here we adapt two input uncertainty quantification techniques for when the performance measure is a quantile of the simulation outputs rather than the sample mean. We implement the methods on two examples and show that both methods accurately estimate an analytical
approximation of the true value of input uncertainty.

Bibliographic note

©2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.