Home > Research > Publications & Outputs > Instructive electroactive electrospun silk fibr...

Electronic data

  • BiomatAdv-accepted

    Rights statement: This is the author’s version of a work that was accepted for publication in Biomaterials Advances. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Biomaterials Advances, Vol., pages, 2022 DOI:10.1016/j.bioadv.2022.213094

    Accepted author manuscript, 4.92 MB, PDF document

    Embargo ends: 23/09/24

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Instructive electroactive electrospun silk fibroin-based biomaterials for peripheral nerve tissue engineering

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
  • Chinnawich Phamornnak
  • Bing Han
  • Ben Spencer
  • Mark Ashton
  • Chris Blanford
  • John Hardy
  • Jonny Blaker
  • Sarah Cartmell
Close
Article number213094
<mark>Journal publication date</mark>30/10/2022
<mark>Journal</mark>Biomaterials Advances
Volume141
Publication StatusPublished
Early online date24/08/22
<mark>Original language</mark>English

Abstract

Aligned sub-micron fibres are an outstanding surface for orienting and promoting neurite outgrowth; therefore, attractive features to include in peripheral nerve tissue scaffolds. A new generation of peripheral nerve tissue scaffolds is under development incorporating electroactive materials and electrical regimes as instructive cues in order to facilitate fully functional regeneration. Herein, electroactive fibres composed of silk fibroin (SF) and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) were developed as a novel peripheral nerve tissue scaffold. Mats of SF with sub-micron fibre diameters of 190 ± 50 nm were fabricated by double layer electrospinning with thicknesses of ∼100 μm (∼70-80 μm random fibres and ∼20-30 μm aligned fibres). Electrospun SF mats were modified with interpenetrating polymer networks (IPN) of PEDOT:PSS in various ratios of PSS/EDOT (α) and the polymerisation was assessed by hard X-ray photoelectron spectroscopy (HAXPES). The mechanical properties of electrospun SF and IPNs mats were characterised in the wet state tensile and the electrical properties were examined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The cytotoxicity and biocompatibility of the optimal IPNs (α = 2.3 and 3.3) mats were ascertained via the growth and neurite extension of mouse neuroblastoma x rat glioma hybrid cells (NG108-15) for 7 days. The longest neurite outgrowth of 300 μm was observed in the parallel direction of fibre alignment on laminin-coated electrospun SF and IPN (α = 2.3) mats which is the material with the lowest electron transfer resistance (R , ca. 330 Ω). These electrically conductive composites with aligned sub-micron fibres exhibit promise for axon guidance and also have the potential to be combined with electrical stimulation treatment as a further step for the effective regeneration of nerves. [Abstract copyright: Copyright © 2022. Published by Elsevier B.V.]

Bibliographic note

This is the author’s version of a work that was accepted for publication in Biomaterials Advances. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Biomaterials Advances, Vol., pages, 2022 DOI: 10.1016/j.bioadv.2022.213094