Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Insulin-like growth factor-II/mannose-6-phosphate receptor
T2 - Widespread distribution in neurons of the central nervous system including those expressing cholinergic phenotype
AU - Hawkes, Cheryl
AU - Kar, Satyabrata
PY - 2003/3/31
Y1 - 2003/3/31
N2 - The insulin-like growth factor-II/mannose-6-phosphate (IGF-II/M6P) receptor is single transmembrane glycoprotein that plays a critical role in the trafficking of lysosomal enzymes and the internalization of circulating IGF-II. At present, there is little information regarding the cellular distribution of the IGF-II/M6P receptor within the adult rat brain. With the use of immunoblotting and immunocytochemical methods, we found that the IGF-II/M6P receptor is widely but selectively expressed in all major brain areas, including the olfactory bulb, striatum, cortex, hippocampus, thalamus, hypothalamus, cerebellum, brainstem, and spinal cord. Intense IGF-II/M6P receptor immunoreactivity was apparent on neuronal cell bodies within the striatum, deeper layers (layers IV and V) of the cortex, pyramidal and granule cell layers of the hippocampal formation, selected thalamic nuclei, Purkinje cells of the cerebellum, pontine nucleus and motoneurons of the brainstem as well as in the spinal cord. Moderate neuronal labeling was evident in the olfactory bulb, basal forebrain areas, hypothalamus, superior culliculus, midbrain areas, granule cells of the cerebellum and in the intermediate regions of the spinal gray matter. We also observed dense neuropil labeling in many regions, suggesting that this receptor is localized in dendrites and/or axon terminals. Double-labeling studies further indicated that a subset of IGF-II/M6P receptor colocalizes with cholinergic cell bodies and fibers in the septum, striatum, diagonal band complex, nucleus basalis, cortex, hippocampus, and motoneurons of the brainstem and spinal cord. The observed widespread distribution and colocalization of IGF-II/M6P receptor in the adult rat brain provide an anatomic basis to suggest a multifunctional role for the receptor in a wide-spectrum of central nervous system neurons, including those expressing a cholinergic phenotype.
AB - The insulin-like growth factor-II/mannose-6-phosphate (IGF-II/M6P) receptor is single transmembrane glycoprotein that plays a critical role in the trafficking of lysosomal enzymes and the internalization of circulating IGF-II. At present, there is little information regarding the cellular distribution of the IGF-II/M6P receptor within the adult rat brain. With the use of immunoblotting and immunocytochemical methods, we found that the IGF-II/M6P receptor is widely but selectively expressed in all major brain areas, including the olfactory bulb, striatum, cortex, hippocampus, thalamus, hypothalamus, cerebellum, brainstem, and spinal cord. Intense IGF-II/M6P receptor immunoreactivity was apparent on neuronal cell bodies within the striatum, deeper layers (layers IV and V) of the cortex, pyramidal and granule cell layers of the hippocampal formation, selected thalamic nuclei, Purkinje cells of the cerebellum, pontine nucleus and motoneurons of the brainstem as well as in the spinal cord. Moderate neuronal labeling was evident in the olfactory bulb, basal forebrain areas, hypothalamus, superior culliculus, midbrain areas, granule cells of the cerebellum and in the intermediate regions of the spinal gray matter. We also observed dense neuropil labeling in many regions, suggesting that this receptor is localized in dendrites and/or axon terminals. Double-labeling studies further indicated that a subset of IGF-II/M6P receptor colocalizes with cholinergic cell bodies and fibers in the septum, striatum, diagonal band complex, nucleus basalis, cortex, hippocampus, and motoneurons of the brainstem and spinal cord. The observed widespread distribution and colocalization of IGF-II/M6P receptor in the adult rat brain provide an anatomic basis to suggest a multifunctional role for the receptor in a wide-spectrum of central nervous system neurons, including those expressing a cholinergic phenotype.
KW - Brain
KW - Immunocytochemistry
KW - Insulin-like growth factors
KW - Western blot
U2 - 10.1002/cne.10578
DO - 10.1002/cne.10578
M3 - Journal article
C2 - 12596253
AN - SCOPUS:0037474619
VL - 458
SP - 113
EP - 127
JO - Journal of Comparative Neurology
JF - Journal of Comparative Neurology
SN - 0021-9967
IS - 2
ER -