Rights statement: This is the author’s version of a work that was accepted for publication in Engineering Applications of Artificial Intelligence. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Engineering Applications of Artificial Intelligence, 91, 2020 DOI: 10.1016/j.engappai.2020.103559
Accepted author manuscript, 2.04 MB, PDF document
Available under license: CC BY-NC-ND
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Interpretable policies for reinforcement learning by empirical fuzzy sets
AU - Huang, J.
AU - Angelov, Plamen P.
AU - Yin, C.
N1 - This is the author’s version of a work that was accepted for publication in Engineering Applications of Artificial Intelligence. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Engineering Applications of Artificial Intelligence, 91, 2020 DOI: 10.1016/j.engappai.2020.103559
PY - 2020/5/31
Y1 - 2020/5/31
N2 - This paper proposes a method and an algorithm to implement interpretable fuzzy reinforcement learning (IFRL). It provides alternative solutions to common problems in RL, like function approximation and continuous action space. The learning process resembles that of human beings by clustering the encountered states, developing experiences for each of the typical cases, and making decisions fuzzily. The learned policy can be expressed as human-intelligible IF-THEN rules, which facilitates further investigation and improvement. It adopts the actor–critic architecture whereas being different from mainstream policy gradient methods. The value function is approximated through the fuzzy system AnYa. The state–action space is discretized into a static grid with nodes. Each node is treated as one prototype and corresponds to one fuzzy rule, with the value of the node being the consequent. Values of consequents are updated using the Sarsa() algorithm. Probability distribution of optimal actions regarding different states is estimated through Empirical Data Analytics (EDA), Autonomous Learning Multi-Model Systems (ALMMo), and Empirical Fuzzy Sets (εFS). The fuzzy kernel of IFRL avoids the lack of interpretability in other methods based on neural networks. Simulation results with four problems, namely Mountain Car, Continuous Gridworld, Pendulum Position, and Tank Level Control, are presented as a proof of the proposed concept.
AB - This paper proposes a method and an algorithm to implement interpretable fuzzy reinforcement learning (IFRL). It provides alternative solutions to common problems in RL, like function approximation and continuous action space. The learning process resembles that of human beings by clustering the encountered states, developing experiences for each of the typical cases, and making decisions fuzzily. The learned policy can be expressed as human-intelligible IF-THEN rules, which facilitates further investigation and improvement. It adopts the actor–critic architecture whereas being different from mainstream policy gradient methods. The value function is approximated through the fuzzy system AnYa. The state–action space is discretized into a static grid with nodes. Each node is treated as one prototype and corresponds to one fuzzy rule, with the value of the node being the consequent. Values of consequents are updated using the Sarsa() algorithm. Probability distribution of optimal actions regarding different states is estimated through Empirical Data Analytics (EDA), Autonomous Learning Multi-Model Systems (ALMMo), and Empirical Fuzzy Sets (εFS). The fuzzy kernel of IFRL avoids the lack of interpretability in other methods based on neural networks. Simulation results with four problems, namely Mountain Car, Continuous Gridworld, Pendulum Position, and Tank Level Control, are presented as a proof of the proposed concept.
KW - Interpretable fuzzy systems
KW - Reinforcement learning
KW - Probability distribution learning
KW - Autonomous learning systems
KW - AnYa type fuzzy systems
KW - Empirical Fuzzy Sets
U2 - 10.1016/j.engappai.2020.103559
DO - 10.1016/j.engappai.2020.103559
M3 - Journal article
VL - 91
JO - Engineering Applications of Artificial Intelligence
JF - Engineering Applications of Artificial Intelligence
SN - 0952-1976
M1 - 103559
ER -