Home > Research > Publications & Outputs > Isotopic characterisation and mobile detection ...

Links

Text available via DOI:

View graph of relations

Isotopic characterisation and mobile detection of methane emissions in a heterogeneous UK landscape

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Isotopic characterisation and mobile detection of methane emissions in a heterogeneous UK landscape. / Takriti, M.; Ward, S.E.; Wynn, P.M. et al.
In: Atmospheric Environment, Vol. 305, 119774, 15.07.2023.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Takriti M, Ward SE, Wynn PM, McNamara NP. Isotopic characterisation and mobile detection of methane emissions in a heterogeneous UK landscape. Atmospheric Environment. 2023 Jul 15;305:119774. Epub 2023 Apr 26. doi: 10.1016/j.atmosenv.2023.119774

Author

Bibtex

@article{02b24ffc90a44489853598739075fb4f,
title = "Isotopic characterisation and mobile detection of methane emissions in a heterogeneous UK landscape",
abstract = "Characterising methane (CH 4) sources and their stable isotope values at the regional level is important for taking effective mitigation actions as well as more accurately constraining global atmospheric CH 4 budgets. We performed dual stable isotope ( 13C, 2H) analysis of CH 4 emission sources as well as mobile 13C measurements in North-West England, in a region with a mix of natural and anthropogenic emission sources as well as potentially exploitable shale gas deposits. Dual isotope analysis was performed for enteric fermentation, animal waste, landfill gas, wetlands, and natural gas from the regional distribution network. Microbial emission sources{\textquoteright} δ 13C values ranged from −72.1 ± 0.31‰ to −53.1 ± 1.17‰ with agricultural sources and landfills showing partially overlapping values (−65.3 ± 0.41‰ to −72.1 ± 0.31‰ and −59.2 ± 0.26‰ to −70.4‰, respectively). However, the use of a dual isotope approach with δ 2H provided additional separation between agricultural (−340 ± 0.8‰ to −322 ± 19.5‰) and landfill (−312 ± 0.3‰ to −282‰) CH 4. All microbial sources were clearly distinct from natural gas with mean values of −39.5 ± 1.38‰ and −184 ± 4.9‰ for δ 13C and δ 2H, respectively. Mobile measurements conducted over a distance of 557 km detected emissions from two out of four surveyed managed landfills in the region. Multiple gas leaks were detected, which may confound emissions from other thermogenic sources. When separating the surveyed area by land-use into agricultural and urban, we found that background levels of CH 4 were more depleted by around 1‰ in areas with agricultural land use compared to urban areas, but emissions from gas leaks and landfills are present in both categories. Our findings highlight the complexity of isoscapes in regions with multiple types of emission sources and the value of dual-isotope measurements in source attribution.",
keywords = "Fugitive emission, Methane source, Deuterium, Carbon, Shale gas, Dual isotope signature",
author = "M. Takriti and S.E. Ward and P.M. Wynn and N.P. McNamara",
year = "2023",
month = jul,
day = "15",
doi = "10.1016/j.atmosenv.2023.119774",
language = "English",
volume = "305",
journal = "Atmospheric Environment",
issn = "1352-2310",
publisher = "PERGAMON-ELSEVIER SCIENCE LTD",

}

RIS

TY - JOUR

T1 - Isotopic characterisation and mobile detection of methane emissions in a heterogeneous UK landscape

AU - Takriti, M.

AU - Ward, S.E.

AU - Wynn, P.M.

AU - McNamara, N.P.

PY - 2023/7/15

Y1 - 2023/7/15

N2 - Characterising methane (CH 4) sources and their stable isotope values at the regional level is important for taking effective mitigation actions as well as more accurately constraining global atmospheric CH 4 budgets. We performed dual stable isotope ( 13C, 2H) analysis of CH 4 emission sources as well as mobile 13C measurements in North-West England, in a region with a mix of natural and anthropogenic emission sources as well as potentially exploitable shale gas deposits. Dual isotope analysis was performed for enteric fermentation, animal waste, landfill gas, wetlands, and natural gas from the regional distribution network. Microbial emission sources’ δ 13C values ranged from −72.1 ± 0.31‰ to −53.1 ± 1.17‰ with agricultural sources and landfills showing partially overlapping values (−65.3 ± 0.41‰ to −72.1 ± 0.31‰ and −59.2 ± 0.26‰ to −70.4‰, respectively). However, the use of a dual isotope approach with δ 2H provided additional separation between agricultural (−340 ± 0.8‰ to −322 ± 19.5‰) and landfill (−312 ± 0.3‰ to −282‰) CH 4. All microbial sources were clearly distinct from natural gas with mean values of −39.5 ± 1.38‰ and −184 ± 4.9‰ for δ 13C and δ 2H, respectively. Mobile measurements conducted over a distance of 557 km detected emissions from two out of four surveyed managed landfills in the region. Multiple gas leaks were detected, which may confound emissions from other thermogenic sources. When separating the surveyed area by land-use into agricultural and urban, we found that background levels of CH 4 were more depleted by around 1‰ in areas with agricultural land use compared to urban areas, but emissions from gas leaks and landfills are present in both categories. Our findings highlight the complexity of isoscapes in regions with multiple types of emission sources and the value of dual-isotope measurements in source attribution.

AB - Characterising methane (CH 4) sources and their stable isotope values at the regional level is important for taking effective mitigation actions as well as more accurately constraining global atmospheric CH 4 budgets. We performed dual stable isotope ( 13C, 2H) analysis of CH 4 emission sources as well as mobile 13C measurements in North-West England, in a region with a mix of natural and anthropogenic emission sources as well as potentially exploitable shale gas deposits. Dual isotope analysis was performed for enteric fermentation, animal waste, landfill gas, wetlands, and natural gas from the regional distribution network. Microbial emission sources’ δ 13C values ranged from −72.1 ± 0.31‰ to −53.1 ± 1.17‰ with agricultural sources and landfills showing partially overlapping values (−65.3 ± 0.41‰ to −72.1 ± 0.31‰ and −59.2 ± 0.26‰ to −70.4‰, respectively). However, the use of a dual isotope approach with δ 2H provided additional separation between agricultural (−340 ± 0.8‰ to −322 ± 19.5‰) and landfill (−312 ± 0.3‰ to −282‰) CH 4. All microbial sources were clearly distinct from natural gas with mean values of −39.5 ± 1.38‰ and −184 ± 4.9‰ for δ 13C and δ 2H, respectively. Mobile measurements conducted over a distance of 557 km detected emissions from two out of four surveyed managed landfills in the region. Multiple gas leaks were detected, which may confound emissions from other thermogenic sources. When separating the surveyed area by land-use into agricultural and urban, we found that background levels of CH 4 were more depleted by around 1‰ in areas with agricultural land use compared to urban areas, but emissions from gas leaks and landfills are present in both categories. Our findings highlight the complexity of isoscapes in regions with multiple types of emission sources and the value of dual-isotope measurements in source attribution.

KW - Fugitive emission

KW - Methane source

KW - Deuterium

KW - Carbon

KW - Shale gas

KW - Dual isotope signature

U2 - 10.1016/j.atmosenv.2023.119774

DO - 10.1016/j.atmosenv.2023.119774

M3 - Journal article

VL - 305

JO - Atmospheric Environment

JF - Atmospheric Environment

SN - 1352-2310

M1 - 119774

ER -