Rights statement: This document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental Science and Technology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/acs.est.5b01137
Accepted author manuscript, 62.8 KB, Word document
Available under license: None
Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Isotopic fingerprint for phosphorus in drinking water supplies
AU - Gooddy, D C
AU - Lapworth, D.J.
AU - Ascott, M J
AU - Bennett, Sarah
AU - Heaton, Tim H. E.
AU - Surridge, Ben
N1 - This document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental Science and Technology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/acs.est.5b01137 Date of acceptance 04/06/2015
PY - 2015
Y1 - 2015
N2 - Phosphate dosing of drinking water supplies, coupled with leakage from distribution networks, represents a significant input of phosphorus to the environment. The oxygen isotope composition of phosphate (δ18OPO4), a novel stable isotope tracer for phosphorus, offers new opportunities to understand the importance of phosphorus derived from sources such as drinking water. We report the first assessment of δ18OPO4 within drinking water supplies. Forty samples from phosphate-dosed distribution networks were analysed from across England and Wales. In addition, samples of the source orthophosphoric acid used for dosing were also analysed. Two distinct isotopic signatures for drinking water were identified (average = +13.2‰ or +19.7‰), primarily determined by δ18OPO4 of the source acid (average = +12.4‰ or +19.7‰). Depending on the source acid used, drinking water δ18OPO4 appears isotopically distinct from a number of other phosphorus sources. Isotopic offsets from the source acid ranging from -0.9‰ to +2.8‰ were observed. There was little evidence that equilibrium isotope fractionation dominated within the networks, with offsets from temperature-dependent equilibrium ranging from -4.8‰ to +4.2‰. Whilst partial equilibrium fractionation may have occurred, kinetic effects associated with microbial uptake of phosphorus or abiotic sorption and dissolution reactions may also contribute to δ18OPO4 within drinking water supplies.
AB - Phosphate dosing of drinking water supplies, coupled with leakage from distribution networks, represents a significant input of phosphorus to the environment. The oxygen isotope composition of phosphate (δ18OPO4), a novel stable isotope tracer for phosphorus, offers new opportunities to understand the importance of phosphorus derived from sources such as drinking water. We report the first assessment of δ18OPO4 within drinking water supplies. Forty samples from phosphate-dosed distribution networks were analysed from across England and Wales. In addition, samples of the source orthophosphoric acid used for dosing were also analysed. Two distinct isotopic signatures for drinking water were identified (average = +13.2‰ or +19.7‰), primarily determined by δ18OPO4 of the source acid (average = +12.4‰ or +19.7‰). Depending on the source acid used, drinking water δ18OPO4 appears isotopically distinct from a number of other phosphorus sources. Isotopic offsets from the source acid ranging from -0.9‰ to +2.8‰ were observed. There was little evidence that equilibrium isotope fractionation dominated within the networks, with offsets from temperature-dependent equilibrium ranging from -4.8‰ to +4.2‰. Whilst partial equilibrium fractionation may have occurred, kinetic effects associated with microbial uptake of phosphorus or abiotic sorption and dissolution reactions may also contribute to δ18OPO4 within drinking water supplies.
U2 - 10.1021/acs.est.5b01137
DO - 10.1021/acs.est.5b01137
M3 - Journal article
JO - Environmental Science and Technology
JF - Environmental Science and Technology
SN - 0013-936X
ER -