Home > Research > Publications & Outputs > Joint Destriping and Segmentation of OCTA Images

Text available via DOI:

View graph of relations

Joint Destriping and Segmentation of OCTA Images

Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSNConference contribution/Paperpeer-review



As an innovative retinal imaging technology, optical coherence tomography angiography (OCTA) can resolve and provide important information of fine retinal vessels in a non-invasive and non-contact way. The effective analysis of retinal blood vessels is valuable for the investigation and diagnosis of vascular and vascular-related diseases, for which accurate segmentation is a vital first step. OCTA images are always affected by some stripe noises artifacts, which will impede correct segmentation and should be removed. To address this issue, we present a two-stage strategy for stripe noise removal by image decomposition and segmentation by an active contours approach. We then refine this into a new joint model, which improves the speed of the algorithm while retaining the quality of the segmentation and destriping. We present experimental results on both simulated and real retinal imaging data, demonstrating the effective performance of our new joint model for segmenting vessels from the OCTA images corrupted by stripe noise.