Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - J-PLUS
T2 - Searching for very metal-poor star candidates using the SPEEM pipeline
AU - Galarza, Carlos Andrés
AU - Daflon, Simone
AU - Placco, Vinicius M.
AU - Allende-Prieto, Carlos
AU - Fernandes, Marcelo Borges
AU - Yuan, Haibo
AU - López-Sanjuan, Carlos
AU - Lee, Young Sun
AU - Solano, Enrique
AU - Jiménez-Esteban, F.
AU - Sobral, David
AU - Candal, Alvaro Alvarez
AU - Pereira, Claudio B.
AU - Akras, Stavros
AU - Martín, Eduardo
AU - Teja, Yolanda Jiménez
AU - Cenarro, Javier
AU - Cristóbal-Hornillos, David
AU - Hernández-Monteagudo, Carlos
AU - Marín-Franch, Antonio
AU - Moles, Mariano
AU - Varela, Jesús
AU - Ramió, Héctor Vázquez
AU - Alcaniz, Jailson
AU - Dupke, Renato
AU - Ederoclite, Alessandro
AU - Jr, Laerte Sodré
AU - Angulo, Raul E.
PY - 2022/1/31
Y1 - 2022/1/31
N2 - We explore the stellar content of the Javalambre Photometric Local Universe Survey (J-PLUS) Data Release 2 and show its potential to identify low-metallicity stars using the Stellar Parameters Estimation based on Ensemble Methods (SPEEM) pipeline. SPEEM is a tool to provide determinations of atmospheric parameters for stars and separate stellar sources from quasars, using the unique J-PLUS photometric system. The adoption of adequate selection criteria allows the identification of metal-poor star candidates suitable for spectroscopic follow-up. SPEEM consists of a series of machine learning models which uses a training sample observed by both J-PLUS and the SEGUE spectroscopic survey. The training sample has temperatures Teff between 4\,800 K and 9\,000 K; $\log g$ between 1.0 and 4.5, and $-3.1
AB - We explore the stellar content of the Javalambre Photometric Local Universe Survey (J-PLUS) Data Release 2 and show its potential to identify low-metallicity stars using the Stellar Parameters Estimation based on Ensemble Methods (SPEEM) pipeline. SPEEM is a tool to provide determinations of atmospheric parameters for stars and separate stellar sources from quasars, using the unique J-PLUS photometric system. The adoption of adequate selection criteria allows the identification of metal-poor star candidates suitable for spectroscopic follow-up. SPEEM consists of a series of machine learning models which uses a training sample observed by both J-PLUS and the SEGUE spectroscopic survey. The training sample has temperatures Teff between 4\,800 K and 9\,000 K; $\log g$ between 1.0 and 4.5, and $-3.1
KW - methods: data analysis
KW - stars: fundamental parameters
KW - stars: statistics
KW - stars: general
KW - stars: Population III
U2 - 10.1051/0004-6361/202141717
DO - 10.1051/0004-6361/202141717
M3 - Journal article
VL - 657
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
SN - 1432-0746
M1 - A35
ER -