Home > Research > Publications & Outputs > Kilonova Seekers

Links

Text available via DOI:

View graph of relations

Kilonova Seekers: the GOTO project for real-time citizen science in time-domain astrophysics

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Kilonova Seekers: the GOTO project for real-time citizen science in time-domain astrophysics. / Killestein, T. L.; Kelsey, L.; Wickens, E. et al.
In: Monthly Notices of the Royal Astronomical Society, Vol. 533, No. 2, 30.09.2024, p. 2113-2132.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Killestein, TL, Kelsey, L, Wickens, E, Nuttall, L, Lyman, J, Krawczyk, C, Ackley, K, Dyer, MJ, Jiménez-Ibarra, F, Ulaczyk, K, O'Neill, D, Kumar, A, Steeghs, D, Galloway, DK, Dhillon, VS, O'Brien, P, Ramsay, G, Noysena, K, Kotak, R, Breton, RP, Pallé, E, Pollacco, D, Awiphan, S, Belkin, S, Chote, P, Clark, P, Coppejans, D, Duffy, C, Eyles-Ferris, R, Godson, B, Gompertz, B, Graur, O, Irawati, P, Jarvis, D, Julakanti, Y, Kennedy, MR, Kuncarayakti, H, Levan, A, Littlefair, S, Magee, M, Mandhai, S, Sánchez, DM, Mattila, S, McCormac, J, Mullaney, J, Munday, J, Patel, M, Pursiainen, M, Rana, J, Sawangwit, U & Stanway, E 2024, 'Kilonova Seekers: the GOTO project for real-time citizen science in time-domain astrophysics', Monthly Notices of the Royal Astronomical Society, vol. 533, no. 2, pp. 2113-2132. https://doi.org/10.48550/ARXIV.2406.02334, https://doi.org/10.1093/mnras/stae1817, https://doi.org/https://academic.oup.com/mnras/article/533/2/2113/7735340

APA

Killestein, T. L., Kelsey, L., Wickens, E., Nuttall, L., Lyman, J., Krawczyk, C., Ackley, K., Dyer, M. J., Jiménez-Ibarra, F., Ulaczyk, K., O'Neill, D., Kumar, A., Steeghs, D., Galloway, D. K., Dhillon, V. S., O'Brien, P., Ramsay, G., Noysena, K., Kotak, R., ... Stanway, E. (2024). Kilonova Seekers: the GOTO project for real-time citizen science in time-domain astrophysics. Monthly Notices of the Royal Astronomical Society, 533(2), 2113-2132. https://doi.org/10.48550/ARXIV.2406.02334, https://doi.org/10.1093/mnras/stae1817, https://doi.org/https://academic.oup.com/mnras/article/533/2/2113/7735340

Vancouver

Killestein TL, Kelsey L, Wickens E, Nuttall L, Lyman J, Krawczyk C et al. Kilonova Seekers: the GOTO project for real-time citizen science in time-domain astrophysics. Monthly Notices of the Royal Astronomical Society. 2024 Sept 30;533(2):2113-2132. Epub 2024 Aug 27. doi: 10.48550/ARXIV.2406.02334, 10.1093/mnras/stae1817, https://academic.oup.com/mnras/article/533/2/2113/7735340

Author

Killestein, T. L. ; Kelsey, L. ; Wickens, E. et al. / Kilonova Seekers : the GOTO project for real-time citizen science in time-domain astrophysics. In: Monthly Notices of the Royal Astronomical Society. 2024 ; Vol. 533, No. 2. pp. 2113-2132.

Bibtex

@article{a716ea2b8ea14322990b879f62500919,
title = "Kilonova Seekers: the GOTO project for real-time citizen science in time-domain astrophysics",
abstract = "Time-domain astrophysics continues to grow rapidly, with the inception of new surveys drastically increasing data volumes. Democratised, distributed approaches to training sets for machine learning classifiers are crucial to make the most of this torrent of discovery -- with citizen science approaches proving effective at meeting these requirements. In this paper, we describe the creation of and the initial results from the $\textit{Kilonova Seekers}$ citizen science project, built to find transient phenomena from the GOTO telescopes in near real-time. $\textit{Kilonova Seekers}$ launched in July 2023 and received over 600,000 classifications from approximately 2,000 volunteers over the course of the LIGO-Virgo-KAGRA O4a observing run. During this time, the project has yielded 20 discoveries, generated a `gold-standard' training set of 17,682 detections for augmenting deep-learned classifiers, and measured the performance and biases of Zooniverse volunteers on real-bogus classification. This project will continue throughout the lifetime of GOTO, pushing candidates at ever-greater cadence, and directly facilitate the next-generation classification algorithms currently in development.",
author = "Killestein, {T. L.} and L. Kelsey and E. Wickens and L. Nuttall and J. Lyman and C. Krawczyk and K. Ackley and Dyer, {M. J.} and F. Jim{\'e}nez-Ibarra and K. Ulaczyk and D. O'Neill and A. Kumar and D. Steeghs and Galloway, {D. K.} and Dhillon, {V. S.} and P. O'Brien and G. Ramsay and K. Noysena and R. Kotak and Breton, {R. P.} and E. Pall{\'e} and D. Pollacco and S. Awiphan and S. Belkin and P. Chote and P. Clark and D. Coppejans and C. Duffy and R. Eyles-Ferris and B. Godson and B. Gompertz and O. Graur and P. Irawati and D. Jarvis and Y. Julakanti and Kennedy, {M. R.} and H. Kuncarayakti and A. Levan and S. Littlefair and M. Magee and S. Mandhai and S{\'a}nchez, {D. Mata} and S. Mattila and J. McCormac and J. Mullaney and J. Munday and M. Patel and M. Pursiainen and J. Rana and U. Sawangwit and E. Stanway",
year = "2024",
month = sep,
day = "30",
doi = "10.48550/ARXIV.2406.02334",
language = "English",
volume = "533",
pages = "2113--2132",
journal = "Monthly Notices of the Royal Astronomical Society",
issn = "0035-8711",
publisher = "OXFORD UNIV PRESS",
number = "2",

}

RIS

TY - JOUR

T1 - Kilonova Seekers

T2 - the GOTO project for real-time citizen science in time-domain astrophysics

AU - Killestein, T. L.

AU - Kelsey, L.

AU - Wickens, E.

AU - Nuttall, L.

AU - Lyman, J.

AU - Krawczyk, C.

AU - Ackley, K.

AU - Dyer, M. J.

AU - Jiménez-Ibarra, F.

AU - Ulaczyk, K.

AU - O'Neill, D.

AU - Kumar, A.

AU - Steeghs, D.

AU - Galloway, D. K.

AU - Dhillon, V. S.

AU - O'Brien, P.

AU - Ramsay, G.

AU - Noysena, K.

AU - Kotak, R.

AU - Breton, R. P.

AU - Pallé, E.

AU - Pollacco, D.

AU - Awiphan, S.

AU - Belkin, S.

AU - Chote, P.

AU - Clark, P.

AU - Coppejans, D.

AU - Duffy, C.

AU - Eyles-Ferris, R.

AU - Godson, B.

AU - Gompertz, B.

AU - Graur, O.

AU - Irawati, P.

AU - Jarvis, D.

AU - Julakanti, Y.

AU - Kennedy, M. R.

AU - Kuncarayakti, H.

AU - Levan, A.

AU - Littlefair, S.

AU - Magee, M.

AU - Mandhai, S.

AU - Sánchez, D. Mata

AU - Mattila, S.

AU - McCormac, J.

AU - Mullaney, J.

AU - Munday, J.

AU - Patel, M.

AU - Pursiainen, M.

AU - Rana, J.

AU - Sawangwit, U.

AU - Stanway, E.

PY - 2024/9/30

Y1 - 2024/9/30

N2 - Time-domain astrophysics continues to grow rapidly, with the inception of new surveys drastically increasing data volumes. Democratised, distributed approaches to training sets for machine learning classifiers are crucial to make the most of this torrent of discovery -- with citizen science approaches proving effective at meeting these requirements. In this paper, we describe the creation of and the initial results from the $\textit{Kilonova Seekers}$ citizen science project, built to find transient phenomena from the GOTO telescopes in near real-time. $\textit{Kilonova Seekers}$ launched in July 2023 and received over 600,000 classifications from approximately 2,000 volunteers over the course of the LIGO-Virgo-KAGRA O4a observing run. During this time, the project has yielded 20 discoveries, generated a `gold-standard' training set of 17,682 detections for augmenting deep-learned classifiers, and measured the performance and biases of Zooniverse volunteers on real-bogus classification. This project will continue throughout the lifetime of GOTO, pushing candidates at ever-greater cadence, and directly facilitate the next-generation classification algorithms currently in development.

AB - Time-domain astrophysics continues to grow rapidly, with the inception of new surveys drastically increasing data volumes. Democratised, distributed approaches to training sets for machine learning classifiers are crucial to make the most of this torrent of discovery -- with citizen science approaches proving effective at meeting these requirements. In this paper, we describe the creation of and the initial results from the $\textit{Kilonova Seekers}$ citizen science project, built to find transient phenomena from the GOTO telescopes in near real-time. $\textit{Kilonova Seekers}$ launched in July 2023 and received over 600,000 classifications from approximately 2,000 volunteers over the course of the LIGO-Virgo-KAGRA O4a observing run. During this time, the project has yielded 20 discoveries, generated a `gold-standard' training set of 17,682 detections for augmenting deep-learned classifiers, and measured the performance and biases of Zooniverse volunteers on real-bogus classification. This project will continue throughout the lifetime of GOTO, pushing candidates at ever-greater cadence, and directly facilitate the next-generation classification algorithms currently in development.

UR - https://arxiv.org/abs/2406.02334

U2 - 10.48550/ARXIV.2406.02334

DO - 10.48550/ARXIV.2406.02334

M3 - Journal article

VL - 533

SP - 2113

EP - 2132

JO - Monthly Notices of the Royal Astronomical Society

JF - Monthly Notices of the Royal Astronomical Society

SN - 0035-8711

IS - 2

ER -